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Dear user, this program is not expensive, but it’s not freeware.  It took me a lot of time to
program and to find or create all the examples!
I need your contribution to develop it (further)...  Thanks for your understanding.
My bank account nr.: IBAN BE90 8907 1405 5932 (BIC VDSPBE91)

1



Contents

General description of this software program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
The basic ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Purpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Method: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Program requirements: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Your wishes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Recommended way of working: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Entering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1) Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2) From a file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3) By generating artificial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Good advice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Remarks about the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Models available in this version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1) Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

“Constant” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
“Linear” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
“Quadratic” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
“Cubic” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
“Orthogonal polynomial” (9th deg. Hermite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2) Nonpolynomial monotonous functions - no asymptotes . . . . . . . . . . . . . . . . . . . . . . . 20
“Power” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
“Power with horizontal shift” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
“Power-Möbius” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
“Refractive index”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
“Logarithm shifted through O” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3) Nonpolynomial monotonous functions - 1 horizontal asymptote . . . . . . . . . . . . . . . . 24
“Exponential + baseline” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
“Plateau - exponential” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
“Diode” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
“RLC serial filter - preset RL” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
“RLC serial filter - preset RC” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
“Weibull growth”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
“Weibull decay” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
“Rational 1”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
“Rational 2” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
“Parallax”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
“Power” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4) Nonpolynomial monotonous functions - 2 horizontal asymptotes . . . . . . . . . . . . . . 32
“Logistic with baseline”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
“Transition” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
“Gompertz growth” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5) Peak functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
“Gauss distribution” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
“Added Gauss distributions”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
“Dagum distribution” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
“Double Logistic + baseline”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
“Power Exp.decay”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
“Skewed peak 1 + baseline” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
“Skewed peak 2 + baseline” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
“Lorentzian peak + baseline” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



“RLC serial filter” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6) Other functions with 1 extremum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
“Chain line” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7) Periodic and semiperiodic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
“Sine wave” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
“Added sine waves” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
“Damped sine wave” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
“Sine wave with harmonics”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
“Periodic peaks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
“Skewed wave” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

About “goodness of fit” and “confidence intervals” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Speed of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chi-squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Use common sense! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
S versus parameter graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Confidence interval estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Example data files   (in alphabetical order) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
* adult men 11.6-13.8 percent fat - h vs m.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
* adult men 11.6-13.8 percent fat - m vs h.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
* Ages of married couples.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
* Air pressure vs Sun position 0-360 in Karlsruhe.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
* Air pressure vs Sun position in Karlsruhe.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
* Air pressure vs Sun position in Karlsruhe SD per degree.dta1 . . . . . . . . . . . . . . . . . . . . 60
* Animal_metabolism_vs_mass_Kleiber_1932.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
* BMI2 vs fat Men 16 and older DIRECT DATA.dta1, BMI2 vs fat Men 16 and older.dta1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
* BMI2 vs fat Women 16 and older DIRECT DATA.dta1, BMI2 vs fat Women 16 and

older.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
* BMI3 vs fat Men 16 and older DIRECT DATA.dta1, BMI3 vs fat Men 16 and older.dta1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
* BMI3 vs fat Women 16 and older DIRECT DATA.dta11, BMI3 vs fat Women 16 and

older.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
* Boyle.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
* BUPA ALT vs GGT.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
* BUPA GGT vs ALT.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
* Car fuel consumption vs mass.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
* Ca-suspension.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
* Cell aptosis vs microwave field strength with rats (Karadayi 2024).dta1 . . . . . . . . . . . 70
* Cereal-crop-yield-vs-fertilizer-per-country.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
* Chain.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
* Charging_capacitor.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
* Child mortality UNICEF 1990.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
* Coin mass.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
* Concrete compressive strength vs age - no additives - 192 water.dta1. . . . . . . . . . . . . 76
* Concrete compressive strength vs cement - no additives - age28.dta1 . . . . . . . . . . . . 77
* Concrete-compressive-strength vs water-cement ratio age28 no add.dta1 . . . . . . . . 78
* Cooling_of_water_cooker.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
* Cotton yield vs K conc Morteza Mozaffari.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
* Diode Si 1N4007.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
* Diode Ge OA72.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
* Diode White LED.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3



* Driving times vs distance.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
* Electrical current from wind.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
* Eurovision Song Contest 2022 jury vs tele.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
* Eurovision Song Contest 2022 tele vs jury.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
* Examination scores vs completion time.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
* Extrav-Q4.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
* Extrav-Q49.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
* Extraversion Q4-Q49.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
* Falling pear.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
* Filter 1 RLC.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
* Filter 2 RL.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
* Filter 3 RC.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
* Food vs total expenditure 2017.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
* Friction of chairs on floor.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
* Happiness vs income.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
* Heart beat land mammals - Mortola 2015.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
* Heart rate after exercise.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
* Height_distribution_adults_USA.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
* Height_boys_12_18.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
* Height_boys_15.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
* Height_of_gutter.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
* Hot_stone_water.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
* Income distribution Belgium 2019.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
* Income distribution of households USA 2020.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
* Internal_resistance_9V_battery.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
* Janka hardness vs density of eucalypt wood.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
* JPG-Red_vs_coffee_concentration.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
* JPG-Green_vs_coffee_concentration.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
* JPG-Blue_vs_coffee_concentration.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
* Life exp vs health spending CH.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
* Life exp vs health spending JAPAN.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
* Life exp vs health spending USA.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
* Lifetimes_pressure_vessels.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
* Lynx.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
* Masks.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
* Mobile phone usage.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
* Noble prizes and chocolate.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
* Pendulum.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
* Pendulum variable length.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
* ping7.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
* Planet orbits.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
* Population_Nigeria1950-2022.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
* Powder flowrate (Flowlac90).dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
* Pressure_vs_temperature_in_jar.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
* Pure water conductivity vs T.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
* Radon220 decay.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
* Refraction_polystyrene.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
* Rivers.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
* Running records.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
* Running speeds ultra-marathons men.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
* Running speeds ultra-marathons women.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
* Salt_water_G_vs_f.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
* Salt_water_conductivity_800Hz.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
* Shoe sizes adult men.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
* Shoe sizes adult women.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4



* Smoking - adolescents Germany.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
* Sponge-ruler.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
* Sunspots-monthly avg.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
* Survival chances Men Belgium 2020.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
* Survival_friends-family.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
* Temperature Chatanga.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
* Temperature in coastal cities.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
* Temp Popovica 20230804.dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
* Throwing a pebble.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
* Tidal_current_Fundy.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
* Tumor growth Daskalakis 101.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
* Vocabulary vs age (Smith 1926).dta1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
* Vocabulary vs word count.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
* Vocabulary vs word count - De Maupassant-Short stories p1-80 & all.dta1. . . . . . . . 154
* Wine ratings vs price Bordeaux 2018 RP.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
* Wine rating comparison.dta1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5



General description of this software program

The basic ideas

Purpose:

To find a “best fitting” curve y = f(x, p1, p2, p3,...) (short: y=f(x)) of a specified kind through a
set of n data points (xi, yi).  This means: to adjust unknown parameters p1, p2, p3,... in the
formula of f as good as possible.

Method:

“Regression”: the wanted parameters are estimated by iteratively changing them so that
the weighted sum of the squares of f(xi)-yi (the vertical distances between the curve and
each data point) are minimized.  After each iteration, this sum is shown, divided by the
degree of freedom, being the number of data points minus the number of parameters, in
order to monitor the process.  This is called the “reduced χ² per degree of freedom”.  See:
https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic.

In the case of invertible functions (i.e.: f-1 is a function too), also the horizontal distances
can be taken into account, by multiplying each term in this sum by f-1(yi)-xi.  This is new
(2021) in this kind of software!  I call this “multidirectional regression” (or fitting if you
like).

So, what is minimized by adjusting the parameters is this:
* in the case of non-invertible functions: the traditional (“OLS” = Ordinary Least

Squares) sum (with however the x errors added in the denominator if “Use σx for
weights?” is checked):
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(I abbreviate this as “MDLS” = Multidirectional Least Squares.)

More information:
www.researchgate.net/publication/350838636_Multidirectional_regression_analysis
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The difference between OLS and MDLS can be visualised best with this simple example, a
linear fit through the points (0, 0), (0, 10), (10, 0) and (10, 10):

The smart reader might notice that the MDLS sum would be the same if you drew the line
from the upper left point to the lower right point.  That’s correct.  That’s what the algo-
rithm will do if you start from different initial parameters.  So, in this very weird case the
MDLS sum has two minima, which might seem a “problem”, but anyway it makes no
sense at all to draw a conclusion from such data.

Program requirements:

* Microsoft Windows operating system (any unicode version) or Mac with Windows
emulator.

* The interface is optimized for the most common screen resolution nowadays (1920 x
1080 pixels), but it will work with less pixels too.

Your wishes...

Software is never “complete”.  If you think anything could be improved, like more models,
more features, more documentation, other improvements,... please let me know!  I plan
to make regular updates.  One of the things on my list is: multiple x variables.

My book “Measuring and modeling by example - How mathematical functions can be used
(and misused) to describe the world” explains much more in depth about how to choose
and judge models, and how to setup and analyze measurements.
See: https://www.lerenisplezant.be/fitting-book.htm

Figure 1Linear OLS will fit a horizontal line through these four
points.  The sum of the vertical distances between the line and the
points is minimized.

Figure 2Linear MDLS will prefere this line.  The sum of the products
of the vertical and horizontal distances is minimal here.
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Recommended way of working:

1) Enter data.  Of course, the number of data points should be at least the number of
parameters in the model function.  Details: see further.

2) Select a model.  This should be compatible with your data, of course.  E.g. you can not
select a power function if there are negative x values in your data.
If you want to know how the model graph responds to parameter changes, just try
some values.  You can also adjust the values by clicking in the parameter edit box and
then using the “arrow up” and “arrow down” keys , which is much quicker!

3) Select the method: OLS or MDLS.  If the model function can have extrema, you can
only select OLS.    Checking or unchecking “Multidirectional fitting” might give quite
different results!  (See further.)

4) If you know that some parameter must have a specific value, like b = 0 if a linear
model has to go through the origin, or a period T of a sine wave model, etc., you
should enter the value and uncheck “active”.  For most models, you can do this before
the first guess.

5) Click the button “Make a good guess”.  A possible problem with iteration is that if you
start with bad initial parameter values or limits, there may be bad or no convergence. 
This  software will help you out to make a reasonable estimation, based upon
heuristic analyses specific for each model.  This will usually work reasonably well if
your data covers the typical features like asymptotes or peaks, and if the x values are
in ascending order (if not: click the “Sort data” button).
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6) Click “Iterate” several times (or enter a number of iterations to do) and check if the
curve fits with the data points better and better.  In some cases it may be necessary
to change the lowest or highest allowed parameter value.
Remark: this button will only be enabled if enough data points were entered: at least
one active point for each active parameter.  If multiple points have the same x value,
they are counted as one, since they can be replaced by one point: (x, weighted
average of the y values).  Example: normally two points are enough to define a line
(y=ax+b), but two points like (5, 7) and (5,8) define a vertical line, which would mean
a= , which is not allowed.  If you see below the data grid: “# active points: 27 - 3” it
means that there are 27 active points, but 3 have a duplicate x value.

7) After enough iterations, the parameters should stabilize, unless the dataset is crap or
the model is not appropriate.  Then you may click “Estimate parameter confidence
intervals” to find out how reliable the parameters are.  (The button is enabled after 10
iterations, but it’s usually better to do some more iterations first.)

8) Set the graph options according to your wishes and click “Show big graph” to admire
the beauty of the fitted curve.  This graph is automatically temporary saved as
“temp.svg” in the program map, but you can save it with a more appropriate name if
you click the “Save” button below the graph.  Since version 1.13 this is a “Scalable
Vector Graph” (SVG), witch can be opened in recent browsers, drawing programs like
InkScape, or word processors.  You can also save it as a JPG using the popup menu
when you right-click the big graph, but the SVG has the advantage that it can be
resized without quality loss.
You can zoom in on details in the graph, using two fingers on your mousepad.
Hover over a data point to see its coordinates and label.

Click the “More options” button if you want to want
to fine-tune the graph (adjust the parameter
position, the font size, etc.).  One of the options is to
set the data points transparent; in that case,
multiple identical data points appear darker (see the
“shoe size” example.

Another interesting option is the number of “Moving
average” points.  If you set this to, let’s say 5, a faint
blue line will be shown from which the first point is the weighted average of the first
5 points; the second point is the average of points 2..6, etc.
If you set the value to 0, nothing is shown.  A value of 1 produces a simple connection
between the measurement points.  When using MDLS, meaning x and y could be
switched, also a green line will show up: these are the moving averages calculated
vertically.  If there is a good fit, the blue and the green lines should mostly coincide.

If you want to see a histogram rather than a scatterplot, check “data bars” and set
“size of data points” to 0.  See the example file “Height_boys_15.dta1".

For the study of data with a periodicity, you might want to check the option to
vizualize the “cross-correlation with the sine function” (c).  The green lines show up
when the measurement and a sine wave with the given period and phase are on the
same side as the given base line.  If both are on different sides, the line is red.  All
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green lines mean there is a good match of both period and phase (c 1).  All red lines
mean that the period matches but the phase is 180° off (c -1).  If there is is no good
match, c 0.
See: https://en.wikipedia.org/wiki/Cross-correlation
The graphs below show a good and a bad cross-correlation.

9) If you want a HTML report, you may now click the “Show” button in the Report section
down right.  The last shown graph will appear there.  The report with an embedded
SVG image of the graph will be saved automatically in the same folder as the data.

10) You may want to do some more investigation of the model, for example by looking at
the residuals graph (differences between measured and calculated y values).  (See
further.)

You can switch (1) and (2).  If no data have been entered and you select a model, you will
see some typical example parameters and the corresponding graph.  Play with the
parameters to get a feeling of how they influence the shape of the curve.

Remark: if you started with OLS, hit the “Guess” button, and then select MDLS and iterate,
it’s possible that the program switches back to OLS, because the parameter limits were
to wide.  If you select MDLS and then click “Guess”, the limits will be set safely, is pos-
sible.

Additionally, you can enter an x value to predict y,
and with invertible functions also y to predict x. 
Since version 1.9, you can have the derivative cal-
culated for a given x, and the integral between
given boundaries.  The integral is calculated analy-
tically (using the primitive function) for these models: “Constant”, “Linear”, “Quadratic”,
“Cubic”, “Power”, “Exponential + baseline”, “Plateau - exponential”, “Rational 1”, “Rational
2”, “Sine wave”, “Added sine waves”, “Damped sine wave”, “Sine wave with harmonics”,
and numerically in other cases.  This allows you, e.g. to get the work after measuring
force and distance, or the total electrical charge after measuring current vs time, etc.
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Entering data

1) Manually

You can enter numbers manually in the data grid.  Essential are of course: the x and y
values of all your measurements, but also the estimated precisions σx and σy, (“errors” or
“confidence intervals” if you will) of the values are required.  Zeros are not allowed! 
There is no such thing as a zero error on measurements.   If you don’t know them, you
might enter all “1” values (= default), but we recommend to use realistic values.  E.g. if
you measure a voltage value “3.56”, with a resolution of 0.01, the precision will be in the
same order, but usually it’s a bit worse, like 0.02 or so.  See the manual of your
instrument.
If your y values are counts in a sample of a population (for example the number of people
between 160 and 165cm tall), usually σy= y can be entered.  If the number in a certain
class (bin) is zero, that rule would suggest σy=0, but that is unrealistic.  There seems to
be no agreement about what to do in this case; if the distribution is not yet known, it’s
impossible to know σy.  I suggest using 1, which might be too big, but better too big than
too small.  This will cause the better known values to have mor weight.
If y is a fraction (for example the percentage of vegetarians in a population divided by
100), a good estimate for σy= (y (1-y)/n), with n the sample size.
The values of σx and σy will be visible in the error bars in the graph, but more importantly,
they will be used to weigh the importance of each data point and to calculate the χ²
values that give you an idea of the goodness of the fit.
When you enter data, the default value for “active” will be “true” (the box in that column is
checked).  That means that this point will be used in the calculations.  If for some reason,
you decide that the point is bad (mistake, erroneous measurement, outlier), you can
uncheck the box.
Optionally, you can enter a descriptive label for each point.  This may be shown on the
graph if you select that option.

Above the data grid, you can enter a description of the data set (title in the graph), a
description of the x variable, which will be shown on the x axis of the graph, and a
description of the y variable (y axis of the graph).

2) From a file

You may want to copy and paste from a spreadsheet or another program, or from a CSV
file.  For that, you have to create a simple plain text file with Windows Notepad (or
another editor).  Make sure that, before you copy, next to the x and y columns, you also
have columns with σx and σy, and column with “1” or “0” values (active or omitted).  A
column with labels is optional.
Before the data columns, you need to insert 4 lines with information (see below).
Save the file as unicode (UTF8) text (normally the default setting) with extension “.dta1”. 
(In a later version, “.dta2” will be for 2 x variables etc.)

The structure of the data files is as you see in the following example:
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Line 1: description of the data set;
Line 2: number of data points (If you would change the 9 to 6, the last 3 measurements
would be ignored.);
Line 3: description of the x variable;
Line 4: description of the y variable;
Next lines (max. 50000): x, σx, y, σy, “1” or “0” if this data point is “active” or “inactive”, and
optionally a label (max. 100 characters).
Important: use points, not commas as decimal separator!  You can use commas to
separate different numbers; don’t use them in numbers.  “123,456” will be read like two
numbers “123” and “456”!  If one your variables is a date, enter the values as the number
of days since a certain starting date, not like “12/4/2021” or something like that.  In
spreadsheet programs like Excel or Quattro Pro there is a function to do that.  You might
enter the dates in the “label” column if you wish, but this format can not be used for
calculating.

Example of data preparation in a
spreadsheet program.  

Select the block, copy and paste it in
Notepad and save it as a text file with
extension “.dta1”.
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3) By generating artificial data

Click the “Generate” button, and enter how many
data points you want to add.  These will be
invented by choosing this number of x values in
the current graph window (uniformly distri-
buted), and by calculating the corresponding y
values, and adding gaussian noise to the x and y
values, i.e. random numbers from a normal
distribution with the chosen standard deviation. 
The amplitude of the noise has to be given in
absolute value or as a percentage of the x or y
value (only possible for models that allow no
negative values).  If y is a counted number, you should use the option “square root”.
The measurement errors (size of the error flags) can be chosen as a percentage of the
noise amplitude.
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Good advice

* Always try to use raw data, don’t “smooth” or filter, avoid any form of “preprocessing”,
especially taking logarithms!  See:
https://www.researchgate.net/publication/349324179_Non-linear_regression_-Why_y
ou_shouldn't_take_the_logarithms_of_your_variables
Only in case you fit distributions (Gauss,...) and x is a continuous variable, you should
make classes first if you want to obtain the classical Gauss curve.
And for exponential and periodic models it makes sense to subtract a large part of
the x variable, e.g. enter the time in years since 1990: 0, 1, 2, 3... instead of 1990, 1991,
1992, 1993,... because small errors in the growth factor or period will cause huge
deviations if you apply big exponents or calculate many periods further.

* Don’t leave points out just because they don’t “look good” (“outliers”), only if you have
good reasons to believe something went wrong with the measurement, or if a
physical/logical reason indicates it doesn’t belong in the dataset.

Some data points make no sense,
e.g. a negative y value for a model
that expects positive values.
Also, it’s possible to have totally
useless points.  Suppose you enter
(0,0) and try to fit a “power” model
with a positive exponent.  In this
case f(0)=0 always, no matter what
the parameters values are, so this
point should be left out (set
inactive) because it doesn’t help
the fitting.  A data point (0,5)
should also be left out here, since
it contradicts with the function.
The same can be said about the
“linear” model with b set inactive
(fixed to a certain value), or a “sine
wave” model with the phase shift
set fixed, etc.

Click the “Check data” button to
automatically search for such points.
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Remarks about the report

The averages and standard deviations of both x and y are calculated without and with
weights (1/s² with s the uncertainty for each x or y), using the traditional formulas.

The quantiles (qi) are calculated with the most logical formula:
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and x1 .. xn the data points, in ascending order.

The same is done for the y values.
(q1 = first quartile, q2 = median, q3 = third quartile)

For example, if n = 20:
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If n = 21:
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The version of Kendall’s tau that is calculated, is the most simple and logical one:
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with n the number of active data points; “sgn” is the signum function (-1, 0 or 1 if the
argument is negative, zero or positive).

Interpretation: if the row of data points is perfectly ascending, τ = 1, if it is perfectly
descending, τ = -1.  If the data points are chaotic or going up and down, τ is much more
near zero. 

Pearson R (= rxy) is calculated as described in every textbook, or e.g.
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Models available in this version

1) Polynomials

“Constant”

f(x) a

Features:
Horizontal line

“Make a good guess” will show the average y value;
iteration will bring you to the weighted average.

Multidirectional fitting?
No, it makes no sense, since an infinite number of x values are possible for the one y
value!

“Linear”

 f x ax b 

Constraints:
a and b can be anything, but if a=0, f is not invertible, and
you better use the “constant” model.

Features:
Straight line, ascending if a > 0, descending if a < 0. 
Intercept with vertical axis: b.  So, if you are sure that a zero x value has to give a zero y
value (e.g.: x = number of apples, y = price), set b fixed to zero.

Derived parameter:

* z
b

a
 

(the zero value)

Guess:
Line through the first and the last point.
All parameters can be fixed (deactivated) before the guess.

Examples:
* If x = temperature and y=pressure in °C or °F of a gas in a closed jar, z is the

experimental value absolute of the absolute zero temperature (0K) in °C or °F.
See the file “Pressure_vs_temperature_in_jar.dta1”.
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* Many physical relationships are linear in approximation, like e.g. if y = F (force) and x
the extension or compression of a spring, the parameter “a” would be the spring
constant and b = 0 (Hooke’s law).

Multidirectional fitting?
If x and y are really causally connected like in the examples above, use it!
If you don’t have a clue about a causal connection and you just want to see if there is
some kind of trend going on, don’t use it.  For example: x=time and y=average annual
quantity of beer per person consumed in a certain country.

“Quadratic”

 f x ax bx c2  

Constraints:
If a = 0, better use the “linear” model.

Features:
Parabola with “valley” shape if a > 0, “hill” shape if a < 0;
Min./max. if x=-b/(2a).
Zeroes if D=b²-4ac>0: x = (-b± D)/(2a)
If the curve has to go through the origin, set c = 0.

Guess:
Parabola through 1st, middle & last point.

Example:
* If x = time and y the distance an object has fallen without friction, a = g/2 (half of the

gravitational acceleration), b = v0 (starting speed) and c = y0 (starting height).  See:
https://en.wikipedia.org/wiki/Free_fall; example data file: “Falling pear.dta1”.

Multidirectional fitting?
No; 0 or 1 or 2 x values are possible for each y value!

“Cubic”

 f x ax bx cx d3 2   

Constraints:
None, but if a=0, use “quadratic”.

Features:
Curve goes from -  to +  if a > 0, otherways if a < 0.
1, 2 or 3 zeroes
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0 or 2 extrema
1 inflection point in x=-b/(2a).
If the curve has to go through the origin, set d = 0.

Guess:
Curve through 4 evenly spread points.

Examples:
* You can fit a 3rd degree polynomial through any set of data, but it’s usually nothing

more than a “passe-partout” model in case you have no clue what the real connection
between x and y is.

Multidirectional fitting?
No; multiple x values may be possible for each y value!

“Orthogonal polynomial” (9th deg. Hermite)

         
   
   

f x a b x c x 1 d x 3x e x 6x 3 f x 10x 15x

g x 15x 45x 15 h x 21x 105x 105x

i x 28x 210x 420x 105 j x 36x 378x 1260x 945x

2 3 4 2 5 3

6 4 2 7 5 3

8 6 4 2 9 7 5 3

                

         

           

Constraints:
None.  To avoid confusion: a, b...j are real numbers here.

Features:
N-th degree polynomial can have n-1 extrema, maximally
n zeroes.
If n is odd: curve goes from -  to +  if the coefficient of the
highest degree > 0, otherways if it is < 0.
If n is even: both limits are +  if the highest degree has a
positive coefficient, otherways they are both - .

Guess: 
All parameters are set to zero, only the upper and lower boundaries are estimated. 
These are good starting values in this case.

Examples:
No natural law can be written as a polynomial with such a high degree.
So, the usage of this model function is only to do approximations within the domain of the
collected data, if you have absolutely no clue about the real functional relationship
between x and y, and you want to see some curve.  The more the data points are nicely
spread out, the better this will work. But, you should never thrust extrapolations of
polynomial models, never.

Multidirectional fitting?
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No; multiple x values may be possible for each y value!

Remarks:
* Why not just use a simple polynomial like y=a+bx+cx²+dx³+...?

The reason is simple: the convergence will be much more stable.  Usually the
absolute values of the parameters will be a nicely descending row.  Using a simple
polynomial, if you fit the first parameters, and then you add the next term, all the
previous parameters might completely flip.  This will be much less when you use
orthogonal polynomials, like the Hermite set.

* If you don’t have many data points, you can deactivate the highest powers of x, to
avoid “overfitting”.  If you expect your data to have a symmetrical pattern left and
right of the y axis, you should only make a, c, e, g and I active; if the origin is supposed
to be a symmetry center, only activate b, d, f, h and j.

More background information:
https://en.wikipedia.org/wiki/Hermite_polynomials
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2) Nonpolynomial monotonous functions - no asymptotes

“Power”

 f x axb

Constraints:
a > 0, b can theoretically be anything, but if b=0 there is
not much fun and the function is not invertible; xi 0, yi 0.

Features:
Curve goes through the origin if b > 0.
Usually this model function is used with b > 0, and then it has no asymptotes, but you can
use it with b < 0, and then it has a vertical asymptote y = 0 and a horizontal one x = 0 (see
further).
Special case: b = 1, linear through the origin.

Guess:
Calculated from 2 points.
All parameters can be fixed (deactivated) before the guess.

Examples (with b>0):
* Scaling laws for objects/bodies with similar density distributions (=hypothesis): x =

height or some other size, y = mass, b should be 3 if the hypothesis is true.
See the example files “adult men 11.6-13.8 percent fat - h vs m.dta1” and “adult men
11.6-13.8 percent fat - m vs h.dta1”, “Animal_metabolism_vs_mass_Kleiber_1932.dta1”.

* Time (y) needed to run a distance x.  If the runner wouldn’t get tired, b would be 1, but
in reality b>1; see: “Running records.dta1”.

* Time needed for a distance on the road; see “Driving times vs distance.dta1”
* Orbit periods of the planets vs their distances (semi-major axis) to the Sun (Kepler’s

third law), see: “Planet orbits.dta1”.
* Very roughly: flow rate vs length or drainage basin surface of a river; see:

“Rivers.dta1”
* Approximately: x = # words in a text, y = # different words in the text.  See the file

“Vocabulary vs word count.dta1”.
* The force required to squeeze a sponge versus the distance it was pressed; see:

“sponge-ruler.dta1”.

Multidirectional fitting?
Definitely use it!  The results will be dramatically better than without using it!
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“Power with horizontal shift”

  if x>c, otherwise y=0   f x a x c
b  

This is kind of an artificial expansion of the previous
model, shifted to the right by c if c > 0.

Examples:
* Simplistic model for flow rate of a powder with particle size c, through a hole with

diameter x.  See file: “Powder flowrate (Flowlac90).dta1”.

Multidirectional fitting?
Yes, as long as the x measurements are bigger than c.

“Power-Möbius”

 f x a
x

1 x

b

 








Constraints:
a 0; 0  xi < 1, yi 0

Features:
If b>0: curve through the origin, ascending and going to a vertical asymptote at x = 1.
If b<0 the curve is mirrored horizontally.
If |b|<1 it starts/ends vertically.

Guess:
Calculated from two points.

Possible applications:
Suppose you add X units of cement to 1 unit of sand and the strength of the concrete
S Xb, then the percentage of cement is x=X/(1+X), so X=x/(1-x), and S=a(x/1-x))b.

Multidirectional fitting?
Yes, use it!
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“Refractive index”

 f x Arcsin
sin(x)

n
 





Constraints:
n 1, 0  xi < 90°, yi 0

Features:
Curve through the origin, ascending and ending flat at x =
90°.

Guess:
Calculated from one point.

Example:
* x = angle of incoming light beam (°), y = angle of refracted beam, n = the desired

relative refractive index of the test substance.
See example file: “Refraction_polystyrene.dta1”

Multidirectional fitting?
Yes, use it!
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“Logarithm shifted through O”

   f x
a

b
ln 1 bx  

Constraints:
xi  0, yi  0, a  0, b > 0

Features:
This is a linear transformation of the natural logarithm function.  The extra b under a
wasn’t really necessary, but it makes the interpretation easier.  The curve goes through
the origin with maximal slope (f’(0) = a), and it keeps ascending slower and slower, but
without horizontal asymptote.  The vertical asymptote at x=-1/b can be ignored if you use
this function with positive variables.

Guess:
Take the leftmost point (x1, y1) and the rightmost (x2, y2).  Then a  y1/x1.  This can be a
rough approximation, but it’s close enough to get the iteration starting.
Parameter b can be estimated from 

y y

x x
f'

x x

2

a

1 b
x x

2

2 1

2 1

1 2

1 2















Example files:
* “Food vs total expenditure 2017.dta1”
* “Vocabulary vs word count - De Maupassant-Short stories p1-80 & all.dta1”.

Multidirectional fitting?
Yes, use it!
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3) Nonpolynomial monotonous functions - 1 horizontal asymptote

“Exponential + baseline”

 f x b a cx  

Constraints:
a>0

Derived parameter:
* Half-life or doubling time:

T
log(2)

log(a)


Features:
Horizontal asymptote y = c.
Always ascending if a > 1, always descending if a < 1.

Guess: 
Calculated from the first, middle and last point.
If the data seem to make no sense: a = 1, b = 0, c = yaverage.
All parameters that can be fixed (deactivated) before the guess.

Examples:
* Newton’s cooling law: x = time, y = temperature of an object; c = environment tempe-

rature, b = temperature excess at t = 0, 0<a<1, small a = fast cooling.  See example file
“Cooling_of_water_cooker.dta1”.

* Growth of a population that has unlimited space and food; x = time, y = number (popu-
lation size), b = start size, a>1, c=0.  See file “Population_Nigeria1950-2022.dta1”.

* Radioactive decay of a certain isotope: x = time, y = mass of the isotope that is left
after x time, b = start mass, c=0.

* Charging/discharging of a capacitor (b<0/b>0): x = time, y = voltage.
* Dimming of light due to absorption (x = distance, y = intensity).
* Heart rate recovery, see example file “Heart rate after exercise.dta1”.
* A learning effect; see “Throwing a pebble.dta1”.

Multidirectional fitting?
Same remark as with the “Linear” model, and also the expected c should be out of the
range of all y values.  E.g. if the curve is descending towards the baseline (a<1 and b>0),
the upper limit for c should be less than the lowest y value.  If not, use OLS.
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“Plateau - exponential”

 f x a 1 e
x c

b  













Constraints:
a>0, b>0; yi 0

Features:
This model overlaps partially with the other exponential model, but the parameters are
expressed in a different way, which might sometimes be more convenient.
Horizontal asymptote: y = a.
If you want the curve to go through the origin, set c = 0.

Guess: a = slightly more than ymax; c = 0; b: calculated from a, c and the middle point.
All parameters can be fixed (deactivated) before the guess.

Example:
* x = time, y = voltage over a capacitor that is charged with a source with voltage a over

a resistor with resistance R, b = RC, c = starting time of the measurements.
See file “Charging_capacitor.dta1”.

Multidirectional fitting?
This function is invertible as long as the y values are within ]0, a[.  If you set the lower
limit of the a parameter a little bit above the highest y value, you can use multidirectional
fitting to improve the results.
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“Diode”

   f x a e 1bx  

Constraints:
a > 0, b > 0

Features:
This is an ascending exponential function, but shifted down so it always goes through the
origin.
Horizontal asymptote: y = -a.

Guess: a and b are calculated from the middle and the rightmost point (neglecting the “-1”
in the equation, which is okay in real situations).
All parameters can be fixed (deactivated) before the guess.
This model is very difficult to fit if the start values are not well chosen!

Example:
* x = voltage over an “ideal” diode, y = current through it, at constant temperature.

The maximal reverse current is -a.  
Parameter b = q/nkT (q = elementary charge, k = Boltzmann constant, T = absolute
temperature, n = ideality factor  1..2).
See: https://en.wikipedia.org/wiki/Shockley_diode_equation
and the example file “Diode Si 1N4007.dta1”.

Multidirectional fitting?
This function is invertible as long as the yi > -a.  If you set the lower limit of the a
parameter a little bit below the lowest y value, you can use multidirectional fitting to
improve the convergence.

26



“RLC serial filter - preset RL”

This is the same as “RLC serial filter”, but with a fixed
parameter b = 0.

Features:
Descending curve; horizontal asymptote y = 0.

Examples:
* x = frequency, y = Uout/Uin with Uin the AC voltage over a coil (inductance L in henry,

internal resistance Ri in ohm) + resistor (resistance R in ohm) in series; Uout is
measured over the resistor (“low pass RL filter).  The fitted parameters b and r are
related to L and Ri; see the “RLC serial filter” model.  See example file “Filter 2
RL.dta1”.

Multidirectional fitting?
Yes, as long as the y values are within ]0, 1[.

“RLC serial filter - preset RC”

This is the same as “RLC serial filter”, but with fixed
parameters r = a = 0.

Features:
Curve ascending from origin; horizontal asymptote y = 1.

Examples:
* x = frequency, y = Uout/Uin with Uin the AC voltage over a capacitor (capacitance C in

farad) + resistor (resistance R in ohm) in series; Uout is measured over the resistor
(“high pass RC filter”).  The fitted parameter b is related to C; see the “RLC serial
filter” model.  See example file “Filter 3 RC.dta1”.

Multidirectional fitting?
Yes, as long as the y values are within ]0, 1[.
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“Weibull growth”

 f x a 1 e

x

b

k

  














 















Constraints:
a > 0 (“amplitude” of the transition); 
b > 0 (determines the steepness);
k > 0.
xi > 0, yi  0

Features:
Curve through origin; horizontal asymptote y = a.
Inflection point exists when k > 1.

Guess:
a  ymax

The x position where y is at half the max. height (xhalf) is estimated; then

b
x

ln2

half

k


k = 2 to start.  It is advized to keep it fixed until a and b are more or less “settled”.
All parameters can be fixed (deactivated) before the guess.

Examples:
* x = time, y = concentration of suspended material; see:

www.researchgate.net/publication/361983006_Nonlinear_Models_by_Parameters_and
_their_Transformation; example file: “Ca-suspension.dta1”.

* Interpreted as a cumulative distribution, it can describe the % or number of deceased
persons or broken devices vs age.  If y is a percentage, set a = 1, otherwise a = total
number of persons/devices.  Example file: “Lifetimes_pressure_vessels.dta1”.
More: en.wikipedia.org/wiki/Weibull_distribution.

* “Happiness vs income.dta1”

Multidirectional fitting?
Yes, as long as your y values stay well within the limits ]0, a[.
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“Weibull decay”

 f x a e

x

b

k

 
 















Constraints:
a > 0 (“amplitude” of the transition); 
b > 0 (determines the steepness);
k > 0.
xi  0, yi  0

Features:
Curve descending from y = a to the horizontal asymptote y = 0.
Inflection point exists when k > 1.

Guess:
See “Weibull growth”.

Examples:
* Interpreted as a cumulative distribution, it can describe the % or number of still alive

persons or still working devices vs age.  If y is a percentage, set a = 1, otherwise a =
total number of persons/devices.  See the file “Survival chances Men Belgium
2020.dta1”.

Multidirectional fitting?
Yes, as long as your y values stay well within the limits ]0, a[.
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“Rational 1”

 f x
ax

x b




Constraints:
a > 0, b > 0, xi  0, yi  0.

Features:
Curve through the origin; horizontal asymptote y = a.

Guess: calculated from 2 points.
All parameters can be fixed (deactivated) before the guess.

Examples:
* x = load resistance (RL), y = voltage (UL), a = maximal battery voltage (UB, without load

resistance), b = the desired internal battery resistance (RB).
See file “Internal_resistance_9V_battery.dta1”.

* Hardening of concrete?
See file “Concrete compressive strength vs age - no additives - 192 water.dta1”.

* Michaelis-Menten kinetics: y = reaction rate (v), x = substrate concentration ([S]), b =
Michaelis constant (KM), see:
https://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics

Multidirectional fitting?
This function is invertible as long as the y values are within ]0, a[.  See the remark in the
“plateau-exponential” model.

“Rational 2”

 f x a
b

x c
 



Constraints:
c  0, xi  0

Features:
Curve not through origin; intercept: y = a-b/c;
horizontal asymptote y = a.

Guess: calculated from 3 points.
All parameters can be fixed (deactivated) before the guess.

Examples:
* x = health expenditure per capita, y = life expectancy.  (Approximation only.)  Para-

meter a is the theoretical limit if an infinite amount of money is spent on health care;
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a-b/c is the theoretical life expectancy if no health care was available.  Extrapolating
this model on the left side makes no sense though.
See file: “Cereal-crop-yield-vs-fertilizer-per-country.dta1”.

* x = wine price, y = rating; see the file: “Wine ratings vs price Bordeaux 2018 RP.dta1”.

Multidirectional fitting?
This function is invertible as long as the y values are all above (b<0) or all below (b>0) the
limit a.  See the remark in the “plateau-exponential” model.

“Parallax”

 f x Arctan
h

x d









Constraints:
h > 0, d > 0.  xi  0, yi  0

Features:
Descending
Horizontal asymptote: y = 0.
Vertical asymptote: none if the constraints are respected.

Guess: calculated from the first and the last point.
All parameters can be fixed (deactivated) before the guess.

Example:
* x+d = distance from an object (building, tree, mountain,...), d = (known or unknown)

distance from the object at the nearest observation point, y = observation angle in
degrees, h = the desired height of the object.  See file: “Height_of_gutter.dta1”.

Multidirectional fitting?
Yes, use it!

“Power”

In case the exponent (b) is negative, this kind of function
does have a horizontal asymptote: y = 0 and a vertical one:
x = 0.
See above.

Examples:
* If x = mass of an animal, and y its heart beat, b<0. 

Parameter a will vary according to the kind of animal (mammal, bird,...).
* Volume vs pressure in a gas at constant temperature; see “Boyle.dta1”
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4) Nonpolynomial monotonous functions - 2 horizontal asymptotes

“Logistic with baseline”

 f x
a

1 e
b

(x c)





 

Constraints:
a > 0 (“amplitude” of the transition); b (“baseline”) can be
anything; κ can be anything, but nothing interesting hap-
pens when it is 0.

Derived parameter:
* Upper limit ± : L = b+a.

Features:
Note: this is in fact a linear transformation of the “cosinus hyperbolicus” function (cosh).
Often y varies between 0 and 1 (no/yes answer); in that case, keep these parameters
fixed: a = 1 and b = 0.
Horizontal asymptotes: y = b, y = b+a.
Inflection point at x = c.
Steepest slope = κ a (in inflection point).

Guess: 
b  ymin; a  ymax - ymin; κ and c are calculated from 2 points.
All parameters can be fixed (deactivated) before the guess.

Examples:
* Transitions: x = time, y goes from b to b+a (if κ > 0) or from b+a to b (κ < 0), c =

inflection point; y can be a concentration, the abundance of a word in a language, an
opinion (e.g. percentage of people against slavery), the evolution in usage of mobile
phones (see file “Mobile phone usage.dta1”),...

* “Tone mapping” in photography: x = brightness of light falling on a pixel, y = pixel value
of red, greed and blue in a JPG image, a = 256, b = 0.  High κ = high contrast.
See example file: “JPG-Red_vs_coffee_concentration.dta1”.

* x = health expenditure per capita, y = life expectancy (years) (approximation only!);
see also “Rational 2”.

* x = age; y = chance of survival (approximation only!).  Set a fixed at 1 (100%) and b at 0. 
See: file “Survival_friends-family.dta1”.

Multidirectional fitting?
This function is invertible as long as the y values are within ]b, b+a[.  So, use it if you see
that y values are not too close to the asymptotic values (if the graph stays absolutely
horizontal in the left or right area).
And at least parameter a or b has to be fixed, since it’s impossible to keep both
asymptotes away from the data cloud at the same time.

More information:
https://en.wikipedia.org/wiki/Logistic_function

32



“Transition”

 f x
a (x b)

x b c

m
k k

1

k


 

 



Constraints:
c > 0, k > 0

Derived parameters:
* Limit at + : L1 = m+a
* Limit at - : L0 = m-a
* Slope at inflection point: p = a/c

Features:
This is a generalization of the sigmoid-shaped 

 f x
x

x 12




With a < 0, the curve goes from the high to the low limit.
If you want the curve to go through the origin, set b = m = 0.

Guess: 
m  (ymax+ymin)/2; a  ymax-ymin (probably too high but better for convergence); 
b  average x value; c is calculated from the first and the last point; k = 2.
All parameters can be fixed (deactivated) before the guess.  In most cases it’s recom-
mended to leave k fixed to a typical value (e.g. 2).

Examples:
* Usually: x = time, y = some state variable.  See: “Logistic + baseline” model, which

looks similar, but the curvature is different, so you could try both to find out which
model fits best.  Titration curves (esp. strong acid + strong base) can fit quite well
with this model (fix k at a small value like 0.1), but not with the logistic one.

* See the example file “Vocabulary vs word count - De Maupassant-Short stories p1-80
& all.dta1”.

* Very often, this function is “mis-used” to fit with binary data (y = 0 or 1); see: file
“Survival_friends-family.dta1”.

Multidirectional fitting?
Yes, as long as your y values stay well within the limits ]m-a, m+a[.
And at least parameter a or m has to be fixed!

a=1, b=0, m=0, c=1, different k valuesa=1, b=0, m=0, k=2, different c values
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“Gompertz growth”

 f x a e deb cx

   

(e=Euler’s constant  2.71)

Derived parameters:
* Inflection point: x_ = b/c
* Slope at inflection point: p = ac/e

Constraints:
a > 0; the start value of c can be set to 0, but it can’t be fixed to 0 because the graph will
stay flat.

Features:
Horizontal asymptotes: y = d, y = d+a.  Usually d = 0.
Ascending if c > 0, descending if c < 0.

Guess: 
d  ymin; a  ymax-ymin; 
A quick scan gives an estimation of the steepest slope (  p) and its x position (  x_), so c

 pe/a; d  c  x_.
All parameters can be fixed (deactivated) before the guess.

Examples:
* This is another sigmoid curve like the “logistic” and “transition” curves, but it tends to

fit better with data from population growth or disease spreading, in cases where the
growth itself is changing monotonously, like: x = age; y = chance of survival.  If known,
set parameter a fixed at 1 (100%) or the starting number, and d at 0.
See file: “Survival chances Men Belgium 2020.dta1”.

* Tumor growth; see file “Tumor growth Daskalakis 101.dta1”.
* Ionic conductivity vs temperature, see “Pure water conductivity vs T.dta1”.

Multidirectional fitting?
Yes, as long as your y values stay well within the limits ]d, d+a[.
And at least parameter a or d has to be fixed, since it’s impossible to keep both
asymptotes away from the data cloud at the same time.

Other parametrisation:

 f x e e x

    

  

α = a, β = eb, γ = c, δ = d.

More information:
https://en.wikipedia.org/wiki/Gompertz_function
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5) Peak functions

“Gauss distribution”

 f x
N

2
e

1

2

x
2

 








 




Constraints:
N > 0, σ > 0; yi  0.

Features:
Probability density of the “normal” distribution.
xi = center of the i’th class of quantity x; yi = number in that class.
Top at x = μ, integral (surface below the peak) = N; the bigger σ, the wider the peak.
Baseline: y = 0.

Guess:

N y xi  
with Δx = class (bin) width, normally (xmax-xmin)/nbins.  If there are some points missing,
this is not correct, but the iteration will fix this.

  


x y

y

i i

i

But, another way of estimating µ is by finding the top of the peak.  If the distribution is
symmetric, both should be approximately the same, but the peak position is not
influenced by outliers, so we take the arithmetic average of both.

 





 


x y

y

i

2

i

i

(= the usual standard deviation)
Another attempt of estimating σ is done by estimating the width of the peak.  This is often
better if there are outliers.
Then, the geometric mean of both attempts is made.
All parameters can be fixed (deactivated) before the guess.

Example:
* “Normal” distribution of a variable x in a “homogeneous” group (variations in x values

are purely “accidental”, not systematic); x can be anything like height, mass or shoe
size among people of the same age, gender, race; or any characteristic of a serially
produced object,...; y = number or percentage of occurrences.  N should fit to the total
number of occurrences or 100% if the distribution is really normal.  Parameters μ and
σ are the mean value and standard deviation of the sample.
See: https://en.wikipedia.org/wiki/Gaussian_function

* See the file “Height_boys_15.dta1”.
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Remarks:
Usually the x values are measurements grouped in classes, e.g. ages 20-30, 31-40, etc. 
Ideally, the number of classes should be approximately N.  If you have 100 measure-
ments, group them in 10 classes.

Multidirectional fitting?
No; 0 or 1 or 2 x values are possible for each y value!

“Added Gauss distributions”

 f x
N

2

p
e

1 p
e

1

2

x
2 1

2

x
2
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Constraints:
0 < p < 1, N > 0, τ > 0, δ > 0, υ > 0; yi  0.

Derived parameters:
* # in group 1: N1 = p·N 
* # in group 2: N2 = (1-p)·N 
* Average x in group 1: µ1 = µ-δ/2
* Average x in group 2: µ2 = µ+δ/2

Features:
Two Gauss peaks added, clearly distinguishable if δ > τ and υ, but they can overlap
seriously if δ is small!
Baseline: y = 0.

Guess: 
N, µ, σ are estimated as if it were a single Gauss peak; then, if we assume (to start) that
both peaks have approximately the same height and width (τ = υ and p = 0.5), it can easily
be calculated that:

     2 2

if we assume τ = υ << σ, say τ = υ = σ/10.  This is often too small, but for the convergence
it’s better to start with too small than too big values.
Then, µ is shifted a bit left and right to find a better start value, because the S vs µ curve
can have a strange shape (not like a parabola and thus difficult for the iteration method).
All parameters can be fixed (deactivated) before the guess.

Example:
* Mixture of 2 populations; e.g. x = height of 12 year old children; µ1 and µ2 will be the

average values of the boys and the girls, τ and υ their standard deviations.  See the
files “Height_distribution_adults_USA.dta1” and “Height_boys_12_18.dta1”.
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Multidirectional fitting?
No; 0..4 x values are possible for each y value!

Remarks:
Why did I put this p and δ in the equation and not N1, N2, µ1 and µ2 directly?  Simply
because N and µ are quite easy to find.  That implicates that they fit in a stable way, and p
and δ will converge more easily.
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“Dagum distribution”
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Constraints:
a, b, p, N > 0, xi > 0, yi > 0

Features:
Depends on the parameter values (image from Wikipedia):

Guess:
The parameters of this distribution are very hard to estimate and interpret.
N  sum of the y values  class width.  If you start with a = p = 2, then b  peak position.
All parameters can be fixed (deactivated) before the guess.

Example:
* This function is often used to describe income distributions, but that is not a gospel.

See files: “Income distribution Belgium 2019.dta1” and “Income distribution of
households USA 2020.dta1”.

Multidirectional fitting?  No

See: en.wikipedia.org/wiki/Dagum_distribution

38



“Double Logistic + baseline”

    
f x

a

1 e 1 e
b

(x c) (x (c d))


 


    

Constraints:
a > 0, κ > 0, λ > 0, d>0; theoretically: yi  b, but the y values
may go a bit below b due to noise.

Features:
Skewed peak, κ big: steeply ascending; λ big: steeply descending. 
Baseline: y = b.

Guess: 
b  ymin; a  ymax - b; κ, λ, c, d: calculated from 4 points and estimated inflection points.
All parameters can be fixed (deactivated) before the guess.

Example:
* What you see when you drop a hot object in a cold liquid: x = time, y = temperature of

the liquid.  κ > 0 reflects the heat conductance of the liquid, λ > 0 reflects the heat loss
(mostly by radiation); b = temperature of the environment, c and c+d are (more or
less) the central times of the up and down transitions.

Multidirectional fitting?
No; 0 or 1 or 2 x values are possible for each y value!
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“Power Exp.decay”

 f x a
x

bn
e

n x

b
n

  






 

Constraints:
a,b,n > 0, x>0.  

Features:
The formula looks a bit frightening, but it is designed to be easily understood: the peak
point is (bn, a).  The curve starts to go up from the origin, vertically if 0<n<1, linearly if n=1
and flat if n>1.  Parameters a and b are just vertical and horizontal stretch factors.
In the limit for n going to 0 f becomes a simple descending exponential function.
Remark: this is similar to the Gamma probability distribution function, but differently
parametrized and with n limited to positive values in order to always have a top.

Guess: 
a  ymax; n = 1 works fine to start; then b  xtop.
All parameters can be fixed (deactivated) before the guess.

Examples:
* Files: “Concrete-compressive-strength vs water-cement ratio age28 no add.dta1”,

“Running speeds ultra-marathons women.dta1”.

Multidirectional fitting?
No; 0 or 1 or 2 x values are possible for each y value!
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“Skewed peak 1 + baseline”
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Constraints:
a, b > 0

Features:
This may seem very complicated, but if you follow the recipe how it is brewed, it’s not.
The base is this simple V shaped function with 2 different oblique asymptotes y = -ax and
y = bx:

 g(x) ln e eax bx 

Using a simple transformation, we obtain an asymmetrical (if a b) bell curve:

 
f (x)

1

g(x)
0 2



And to make it more versatile, we add the usual scaling and shifting parameters:

 f(x)
h

m
f

x c

s
d  m = f x0 0 m






 

Theoretically, m is not necessary, but the height of f0 varies a lot when a and b change,
which disturbes the iteration seriously, and dividing by this height, makes h exactly the
height of the peak in f.
There is actually one parameter too much, so normally you should set s=1 fixed, but if you
want to force symmetry, you can fix a=b=1 and leave s free.
This function might be interpreted as a probability distribution, since its integral is finite,
but it can only be calculated numerically.

Guess:
d  lowest y value; h  highest - lowest y value; c  x with the highest y value; a = b = 1;
s  estimated peak width * (a+b)/2/0.8.
All parameters can be fixed (deactivated) before the guess.

Examples:
* The distribution of ping response times can be approached by this function; see the

file “ping7.dta1”.

41



“Skewed peak 2 + baseline”
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Features:
To understand this function, start from the same base function g (see skewed peak 1), but
then do this transformation to obtain a bell curve:

 f (x) e0

g(x)
2

 

and then calculate m and add the scaling parameters as with peak version 1.

Guess:
See peak version 1.

Examples:
* See peak version 1.
* See the file “Hot_stone_water.dta1”.
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“Lorentzian peak + baseline”

 f x
a

1
x c

b

d
2












Features: 
a peak centered around x = c, amplitude a, baseline y = d; b determines the width.

Constraints:
b > 0

Guess: 
c  x position of ymin or ymax; d  ymax or ymin; a  ytop - d; 
b  (xmax-xmin)/2    (This is not precise but normally OK to start with.)

Derived parameters:
* the integral of the peak (minus baseline): I = πab 

Examples:
* Often: x = frequency, y = optical/mechanical vibration intensity...  The y variable peaks

when there is some kind of resonance phenomenon.
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“RLC serial filter”
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Constraints:
a  0, b  0, r  0, x > 0, 0 < y < 1

Features:
If a > 0 and b > 0: curve ascending from origin (= limit) to a peak, then slowly descending
to 0 at infinity.
If a = 0 or b = 0 (not both), the curve is monotonous; see the special cases “RLC serial
filter - preset RL” and “RLC serial filter - preset RC”.

Derived parameter:
* Peak position (resonance frequency): x = (b/a) = 1/(2π (LC))

Guess:
Peak position  x value with maximal y; r  1/ymax-1; a and b are calculated with another
point.

Example:
* x = frequency, y = Uout/Uin with Uin the AC voltage over a coil (inductance L in henry,

internal resistance Ri in ohm) + capacitor (capacitance C in farad) + resistor (resis-
tance R in ohm) in series; Uout is measured over the resistor (“band pass RLC filter”). 
See example file: “Filter 1 RLC.dta1”
Meaning of the fitted parameters: r =  Ri/R; a = 2πL/R; b = 1/(2πRC).  The peak height
will only reach 1 if the coil is “ideal” (zero internal resistance).

Multidirectional fitting?
Only in the special cases when a = r = 0 (RC filter) or b = 0 (LC filter) and as long as the y
values are within ]0, 1[.
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6) Other functions with 1 extremum

“Chain line”

 f x a cosh
x c

a
1 b 















This is a linear transformation of the hyperbolic cosine
function (cosh(x) = (ex+e-x)/2.

Features: This is a parabolic looking curve with top (c,b); U shaped if a > 0, and upside
down if a < 0; it reduces to a flat line y = b if a = 0.

Guess:
If the points form a convex pattern, c = x value with minimal y, otherwise c = x value with
maximal y; 
b is the corresponding y value; 
a is estimated from another point using the Taylor approximation (cosh(x) = 1+x²/2+...).

Examples:
* a hanging chain or cable (see file “Chain.dta1”);
* a well constructed arch in a building (e.g. a bridge).
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7) Periodic and semiperiodic functions

“Sine wave”

 f x m A sin 2
x c

T
  









Constraints:
A > 0, T > 0

Derived parameters:
* Pulsation: ω = 2π/T 
* Frequency: f = 1/T.  If T is in seconds, f is in Hertz.

Features:
Curve goes up and down around the average y = m, with period T, amplitude A, phase
shift c.  See e.g. en.wikipedia.org/wiki/Sine_wave

Guess:
m  yaverage; A  2 standard deviation of y values; T is estimated by crosscorrelating the
series yi-m with f(x)=sin(2πx/Ttest) with Ttest varying over a range (from 3(xn-x1)/n to (xn-
x1)/2), then c is  estimated by crosscorrelating with f(x)=sin(2π(x-ctest)/T) with ctest varying
from -T/2 to T/2.
Parameters that can be fixed (deactivated) before the guess: a, A, c, T.

Example:
* Any periodic variable, so x = time, y might be the average daily outside temperature

(or the daily maximum or minimum) on a certain place, T = 1 year, m = average tem-
perature, c = time of the year when it’s warming up the fastest.
See file “Temperature Chatanga.dta1”.

* But x (and T) can also be spatial distance, then y could be a height, intensity of a
standing wave,...

Multidirectional fitting?
No; 0 or an infinite number of x values are possible for each y value!

Remarks:
* The guessed parameters will usually be good if you have sufficient data, covering at

least one period.
* Do enough measurements, and do them at irregular time intervals, in order to

minimize the risk to find false frequencies (“aliasing effect”, see:
https://en.wikipedia.org/wiki/Aliasing).

* If T is known, use it!  E.g. if t is the time in days, and you know that your periodicity is 1
year, enter T = 365.25 and set “active” to false (uncheck).

* For all the periodic models, it’s best to reduce the x values to smaller numbers.  E.g.
if x = time in years, like 2000, 2001, 2002 etc., change it to 0, 1, 2, etc., so x = years
since 2000.  This improves the stability of the period estimation.
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“Added sine waves”

 f x m A sin 2
x c
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B sin 2

x d
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Constraints:
A > 0, T > 0, B > 0, U > 0

Derived parameters:
* Pulsation 1: ω1 = 2p/T
* Frequency 1: f1 = 1/T
* Pulsation 2: ω2 = 2p/U
* Frequency 2: f2 = 1/U

Features:
Sum of two sine waves, so only strictly periodical if T and U are integers (the period is
then least common multiple of T and U).

Guess: 
m, A, T, c: see “Sine wave”; the second period (U) is just set a bit smaller than T, and the
second amplitude (B) 10x smaller than A to start with.  Since it is not easy to estimate U,
it’s best that you enter a reasonably expected value before iterating.
Parameters that can be fixed (deactivated) before the guess: a, A, c, T, λ.

Examples:
* x = time, y = tidal height or current, T = 12h, U = 12.4206h (Sun and Moon rhythms).

See file “Tidal_current_Fundy.dta1”.
* x = time, y = temperature, T = 365.25 days, U = 1 day (yearly and daily rhythms).  This is

very difficult to fit because the “noise” is often bigger than the amplitude B.

Multidirectional fitting?
No; 0 or an infinite number of x values are possible for each y value!

Remarks:
Clicking the “Guess” button will usually produce a good result for T, but U is much more
difficult to find.  So, if you have a good idea about the periods, enter your guesses and
lower and upper limits!

“Damped sine wave”

 f x m A e sin(2
x c

T
)x   

 

Constraints:
A > 0, T > 0, λ > 0

Derived parameters:
* Pulsation: ω = 2p/T 
* Frequency: f = 1/T
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Features:
Not strictly periodic (unless λ = 0), but we could describe it as a periodic curve with
descending amplitude (the bigger λ, the quicker it descends).

Guess: 
m, A, T, c: see “Sine wave”; λ is estimated by comparing the averages of |yi| of the first
and the second half of the points.
All parameters that be fixed (deactivated) before the guess.

Example:
* Usually x = time, y might be the displacement of a realistic pendulum with friction. 

The bigger λ, the bigger the friction.  See file “Pendulum.dta1”.

Multidirectional fitting?
No; 0 or an infinite number of x values are possible for each y value!

“Sine wave with harmonics”

 f x m A sin
2 (x c)

T
B sin

4 (x d)

T
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T
  


 


 


 

   

Constraints:
A > 0, B > 0, C > 0, D > 0, T > 0

Derived parameters:
* Pulsation: ω = 2p/T 
* Frequency: f = 1/T

Features:
The period is T, but the repeated pattern can have a
complicated shape.

Guess: 
m, A, T, c: see “Sine wave”; all other amplitudes are set to small amplitudes and the
phases are set to 0 to start with.
All parameters can be fixed (deactivated) before the guess.

Examples:
* Usually x = time, y = any kind of quantity that varies periodically but in a more

complex way than simply “wave like”, a heart beat, a sound, the number of sun spots,
animal populations,...  See file: “Lynx.dta1”

Multidirectional fitting?
No; 0 or an infinite number of x values are possible for each y value!

For the stability of the iteration, you may want to begin with setting B, C and D fixed to
zero, do some iterations and adjustments to get the main period correct, and then
activate B, C, D.
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“Periodic peaks”
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Constraints:
T > 0, k > 0

Features:
This may seem complicated, but it is only a generalization of:

 f x
1

sin x 1
0 2




so that the baseline is y = m, the peak height A, and the period T.  The smaller k, the
sharper the peaks.

Guess: 
A, T, c: see “Sine wave”; but m is set to ymin; k = 1.
All parameters can be fixed (deactivated) before the guess.

Multidirectional fitting?
No; 0 or an infinite number of x values are possible for each y value!

Examples:
* x = time, y = population of a predator like the lynx (see the example files).
* x = time, y = number of sunspots (oversimplified approximation);

see “Sunspots-monthly avg.dta1”.
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“Skewed wave”
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Constraints:
A > 0, T > 0, -1  k  1

Derived parameters:
Same as “Sine wave”

Features:
This function is periodic with period T, but the peak position is not in the middle of the
average crossing points.  The first top is at:

x T Arccos(k) ctop   
And the amplitude is:

y m
A

k
Arctan

k

1 k
top

2
 













With k = 0, strictly, the function is undefined, but the limit is the regular sine function.
If k > 0, the ascending slope is steeper than the descending slope.
If |k| = 1, the function becomes a “sawtooth”.
Amplitude  A when |k| is small, π/2 A when |k| = 1.

Guess: 
m, A, T, c: see “Sine wave”; k is set to 0 to start with.
All parameters can be fixed (deactivated) before the guess.

Examples:
* Use this model whenever you would use a sine, but suspect an asymmetry.  See the

files: “Temperature Chatanga.dta1” and “Temp Popovica 20230804.dta1”.

If you need another model, please let me know!  I will implement it in the next version!
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About “goodness of fit” and “confidence intervals”

Of course, you will want to know how reliable your model and parameters are.  What can
we say about that?  
Of course, visually inspecting the graph will tell you a lot already, but there are other
means.

Speed of convergence

A good indicator of the appropriateness of the model is the number of iterations needed
to obtain stable parameters.  If the characteristics of the model functions (slope, extre-
ma, periodicity, infliction points, asymptotes etc. can be detected easily in the data, only a
small number of iterations (like 10..100) will be needed in order to keep the first 5
significant digits of the parameters stable.
For example: if you want to find a periodicity in your data but your points only form like
the half of a wave, then there might be a whole range of periods possible.  If you have
points that go up and down several times, the period will be found quickly without much
uncertainty.
So, if you need to keep iterating thousands or millions of times and you see the para-
meters change every time, while the curve seems to stay the same visually, that’s a bad
sign.  It simply means that you need more data to decide if the model is appropriate, and
those data should be in different areas of the domain of the model function.
Example: take a look at the file “Life exp vs health spending CH.dta1”.  The points are
more or less on an ascending line, but you know they can’t be, since that would go below
zero on the left side, and towards infinity on the right side.  The curvature is not really
clear enough to decide which kind of function is the best to describe it, so whatever
model you try, it will converge slowly.
Compare the graphs below: the second curve (after 12000 iterations) is pretty much the
same as the first one (after 3000 iterations) but the parameters changed drastically: the
life expectancy went from 99.88 to 106.15 years.  This simply means we can not conclude
anything from this model, sorry!  The logistic model is more stable in this case and hence
a little bit more reliable.

After 3000 iterations After 12000 iterations
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Chi-squared

In most cases, after a number of iterations, the parameter values become more and
stable, unless the data are very noisy or the model function is clearly inappropriate.  The
S value, will reach a relative minimum.  The values of χ² (per degree of freedom) in the y
and the x direction (if the function is invertible), related to S, are shown after each
iteration:

(npars is the number of active parameters, so n-npars is the degrees of freedom number.)

Usually in other software, in the best case, only the first one is calculated.
What can be concluded from these numbers?  If the residues in the vertical direction (ry,i =
yi-f(xi)) are in the same order of magnitude as the estimated uncertainties of the y values
(σy,i), then χy should be around 1.  If it is smaller than 1, it means the function fits better
than expected, or... the σy,i values are overestimated.  If it is much bigger than 1, it can
mean that the fit is bad (wrong model), or... that the σy,i values are underestimated! 
Therefore, it is of great importance to enter realistic values for σy,i!  The same reasoning
can be done for the horizontal residues (rx,i = xi-f-1(yi)) of course.
So, χ² values around 1 are okay, less is usually better, but don’t rely only on them to
judge.
See also: https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic.

Most regression programs calculate the so-called coefficient of determination r², the
square of the Pearson correlation coefficient, which can be written in this form:
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with f(x) = ax + b.  It’s only meant to be used for linear models, which is a big limitation.
If the point cloud looks like a cigar, r² is close to 1, if it looks round, r² is close to 0.  If all y
values are exactly aligned, r²=1, but if that line is horizontal, a catastrophic error occurs,
which is kind of strange.
See for example: https://online.stat.psu.edu/stat462/node/95/
I often notice that people think of this r² as an indicator of the “goodness of fit” of their
model, but that is a mistake.  χ² is much better for that.  Just consider this example:
The measurements:

x 2 3 10 13

y 5 7 10 15

Suppose the x values all have a precision of ±0.1.
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Now, in the left graph below, we gave the y values a precision of ±0.1; in the right one the
precision was ±2.

Of course the obtained regression line (linear model, MDLS) was the same, but the
uncertainty in the parameters is different (see p.55):
Left: a = 0.794 ± 0.018, b = 3.5 ± 0.17
Right: a = 0.79 ± 0.4, b = 3.5 ± 3.4

In both cases, r² was the same of course (0.919783, calculated with Quatto Pro), but in the
vertical direction, the χ² values were very different!
Left: χ²  236; this means that there are certainly other variables besides x influencing y!
Right: χ²  0.59; the regression line passes through all the error flags; this means that
the linear model might well be correct, but we need more precise measurements to have
more certainty.
So, the conclusions that can be drawn from χ² are much more interesting than those we
get from just looking at r², and χ² can be used for any model!  You also see that a good
estimation of the precision of your data is really necessary if you want to draw the right
conclusion!

Use common sense!

By far the best way to judge if a model is appropriate, is: check if it is supported by
scientific reasoning, definitely not by comparing the fitting results!  Just consider for
example that you can always fit an n-1th degree polynomial perfectly through a set of n
data points!  A model with more parameters will generally “fit” better, because the curve
can adapt better to the data, but that doesn’t mean it is a better model!
A good model usually gives you good extrapolated values, a bad model will most
certainly produce nonsense if you feed it with x values beyond the range of your dataset. 
E.g.: you can fit a straight line through any dataset, but ask yourself: “Does it mean
anything if I extrapolate it to the point where the line goes below zero?”.

Residuals

If you doubt if the scientific reasoning explains your data sufficiently, you might click the
“Show residuals” selector.  If you see that the residuals are randomly spread around 0,
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that’s a good sign.  If you recognize a clear pattern in the points, you might have to adjust
your model formula.
You can also use this graph to detect
so-called “outliers”, data points that
don’t seem to “obey” the model very
well.  For example: if you look at the
power function fitted through the
dataset of the orbit times of planets and
other objects vs their axis length, it
looks very nice, but if you look at the
residuals, you see that the last object
(Eris) is more than 3 standard devia-
tions away from the model function.

If desired, you can also click the “Save residuals” button, and they will be stored in a file
with the same name, but “residuals” added.

S versus parameter graph

Another tool this program offers to evaluate the “goodness of fit” for a model, is this:
click somewhere in the panel of a parameter; a small graph will appear and show the
relative variation of S versus the parameter.  If the regression was done successfully,
the actually found parameter value (indicated by a red line) should be in a clear relative
minimum of this graph.  Below you see the analysis of 13 years of temperatures (monthly
averages) of a place called Chatanga (Siberia).  The algorithm finds a period of 11.987
months, not precisely 12, but that’s normal: months don’t have equal lengths!  It would be
better in such cases to measure the time in days since a certain starting day and expect
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a period of 365.25 days.  Anyway, this 11.987 is obviously in a deep minimum, so the
chance that this period is “pure coincidence” is very low.

On the other hand, if we would want to
check if a period of, say 5.2, exists in the
data, you could enter 5.2 in the box next to “T
=”, confirm (v button a bit below), and then
ask the S vs T graph again.  Then we would
see only a very small dip in the S plateau
and the 5.2 is not in the minimum.  Of course
there is no physical reason to expect a
periodicity of 5.2 months.

Confidence interval estimation

What happens when you click the button “Estimate parameter confidence intervals”?
To each x and y value, some random noise is added with a standard deviation equal to the
entered σx and σy.  Then a number of iterations is done (depending on the model) to
produce new parameter values with these noisy data.  This is done a 100 times, and the
standard deviations of these values are calculated.  If the σx and σy values are realistic,
AND if sufficient iterations were done to get stable parameters, the so obtained standard
deviations should be realistic estimations of the parameter confidence intervals, taking
into account both the uncertainties in the data as well as the error propagation trough
the model function.
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Remarks:
* If σx and σy are normal standard deviations (meaning: the chance the entered xi value

is between xi-σx,i and xi+σx,i is approximately 68%), so will be the parameter devia-
tions.  If σx and σy are 95% confidence intervals, so will be the parameter deviations.

* If you hit the button again, you might get slightly different deviations.  There is no way
to get them with absolute precision.  It’s the order of magnitude that counts.

* It makes no sense to do this calculation before the parameters came to convergence.
* With large datasets this calculations may take some time.  Be patient...

Once you did this calculation, you will see some extra dotted lines on the graph (if you
checked “Show curves with deviations”).  These represent “worst cases”: if there is only 1
parameter p, you will see 2 dotted lines, one where p is replaced by p+σ and one with p-σ
(σ being the error, or deviation if you will, on the parameter).  If there are 2 parameters,
you will see 4 dotted lines: (1) with p1-σ1 and p2-σ2, (2) with p1-σ1 and p2+σ2, (3) with p1+σ1

and p2-σ2, (4) with p1+σ1 and p2+σ2.  With 3 parameters, you’ll see 8 dotted lines, etc.
This will give you a good idea of the reliability of your model.

These examples (with 1 and 2 parameters) look quite good:

The following example is an attempt to fit the flow rate (Q) of rivers versus their drainage
basin surface (A) with a power function: Q=aAb.  The line doesn’t fit very well, but the
graph can give you an idea of the average rainfall in the basin: above the line = much rain,
below the line = little rainfall.  BTW, the highest point is the Amazon of course.
Notice the big uncertainty in the a parameter: a=(8.1±6) 10-5 and the high χ² values: 9451
(vertical) and 7.12 1011 (horizontal).
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Example data files   (in alphabetical order)

In order to give you something to play with, I give you some example data files.  You can
use them for training or educational purposes.
You will find them in the folder \data\examples in the program file folder.

* adult men 11.6-13.8 percent fat - h vs m.dta1
* adult men 11.6-13.8 percent fat - m vs h.dta1

Variables: x = mass (m, in kg); y = height (h, in m) (and vice versa) of 90 adult American
men with fat percentage between 11.6 and 13.8.

Source: NHANES, thanks to Nir Krakauer.

Try the “Power” model and notice how dramatically the parameters change if you choose
the classical or multidirectional fitting.  This shows how wrong the BMI (“body mass
index”) is.

See also:
www.researchgate.net/publication/358736303_The_Body_Mass_Index_recalculated
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* Ages of married couples.dta1

Variables: x = age of husband, y = age of wife (years) from 170 random married British
couples in 1980.

Source: OPCS study in Great Britain, by C.Marsh (1988), quoted in “A Handbook of Small
Data Sets”, by D.J. Hand, F. Daly, A.D. Lunn, K.J. McConway and E. Ostrowski, Springer
1994.

This is a typical example where you can expect a more or less linear relationship,
because in most cases there is not very much age difference between spouses.
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* Air pressure vs Sun position 0-360 in Karlsruhe.dta1
* Air pressure vs Sun position in Karlsruhe.dta1
* Air pressure vs Sun position in Karlsruhe SD per degree.dta1

Variables: x = Sun position in ecliptical longitude (0..360° in the first file, cumulative in the
second file), y = air pressure in hPa.  Third file: x = Sun position interval [x-0.5, x+0.5[
center, and y = standard deviation of the pressure for each degree.
The measurements were done every morning 1 Jan. 1876 to 1 March 2006, except between
Nov. 1944 and Sep. 1945 in Karlsruhe, Germany. 
Source: www.dwd.de/EN/ourservices/_functions/search/search_Formular.html

The average pressure is almost constant throughout the year; a skewed wave with a very
small amplitude fitted looks like this:

The variability (standard deviation) is clearly seasonal though:
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And there is a very tiny downward trend in all those years:
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* Animal_metabolism_vs_mass_Kleiber_1932.dta1

Variables: x = body mass (m, in kg) of a mammal, y = basal metabolic rate (M, in kcal/day)
of the animal.  Errors of 10% were used (no real standard deviations available).

Source: measurements by the Swiss biologist Max Kleiber.
https://hilgardia.ucanr.edu/fileaccess.cfm?article=152052&p=VOWQRB

Bigger mammals consume more energy, but how much?
Try the “Power” model to find the relationship!  With MDLS you come close to the theo-
retically expected relationship M m0.75.
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* BMI2 vs fat Men 16 and older DIRECT DATA.dta1, BMI2 vs fat Men 16 and older.dta1
* BMI2 vs fat Women 16 and older DIRECT DATA.dta1, BMI2 vs fat Women 16 and

older.dta1
* BMI3 vs fat Men 16 and older DIRECT DATA.dta1, BMI3 vs fat Men 16 and older.dta1
* BMI3 vs fat Women 16 and older DIRECT DATA.dta11, BMI3 vs fat Women 16 and

older.dta1

Variables: x = body fat percentage; y = the classical BMI (Body mass index = “BMI2” = m/h²
with m: body mass in kg, and h: height in m) and “BMI3” (Corpulence index = m/h³).  Files
with “direct data” contain all the individual data, while in the others they are grouped in
bins of fat percentages [16, 18[, [18, 20[ etc.

Source: 8039 American men, age 16 and more, 7475 women, NHANES

There seems to be a more or less exponential relationship between the corpulence index
and the body fat%.  For example:

See also:
www.researchgate.net/publication/358736303_The_Body_Mass_Index_recalculated
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* Boyle.dta1

Variables: x = volume (V), y = pressure (p) in a gas, arbitrary units.  No information about
the precision was given, so I assumed the pressure was ±1 and the volume ±0.0125 since
all measurements were multiples of this value.

Source: Original measurements Robert Boyle 1662, cited in:
web.lemoyne.edu/~giunta/classicalcs/boyleverify.html

Of course, the appropriate model here is “Power”.
The purpose of the measurements was to prove that the pressure is inversely
proportional to the volume, or in other words: the exponent b should be -1.
With MDLS you get -0.998 ± 0.040, with OLS: -0.996 ± 0.055.
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* BUPA ALT vs GGT.dta1
* BUPA GGT vs ALT.dta1

Alanine aminotransferase (ALT) and glutamyltransferase (GGT) are markers in the blood
that might predict liver disorders, see: www.ncbi.nlm.nih.gov/pmc/articles/PMC3633107/.
They are supposed to be related by a power function.  You can check that for yourself.
Some data, measured by “The British United Provident Association Limited” (BUPA), were
collected from this site:
web.archive.org/web/20171023174701/http://ftp.ics.uci.edu:80/pub/machine-learning-data
bases/liver-disorders/

Variables: x = ALT, y = GGT and vice versa in the second set.
Strangely no units were mentioned in the dataset, but I assume it must be concentra-
tions, some quantity per liter.  All the numbers were rounded to integers; I assumed
errors of +-1 by lack of given confidence intervals.

This is how the power function fit looks.  The correlation is very poor (Kendall τ is only
0.40).  Also try OLS in both directions to see the dramatic differences.
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* Car fuel consumption vs mass.dta1

Variables: x = empty mass of a car (in kg); y = average benzine consumption (in l/100km)
of the car when driving in urban areas.

Source: https://www.autoweek.nl/carbase/?bouwjaar=2018--2021&brandstof=benzine

A power function fits reasonably well, with exponent about 1.5.
One type of car seemed to consume way above expected: the Lamborghini Aventador S,
so to make conclusions about more “normal” passenger car behavior, I left that one out
for the fitting.

A quadratic function with c=0 also fits well, but I’m not sure if that makes more sense.  It
is less sensitive to the Lamborghini outlier though.
Some sources suggest an exponential relationship, but that would be weird, since a zero
mass should have a zero consumption.  I have even seen a guy on Youtube explaining a
linear regression on the “consumption” expressed in the American way (miles per gallon)
vs mass; that is crazy of course!
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* Ca-suspension.dta1

Variables: x = time in minutes, y = concentration of suspended calcium (nmol/mg).
No precision was given, but for each time value, 3 measurements were done, so I calcu-
lated the standard deviation to be used as the precision.  For the time, I assumed equal
precisions 0.01min.

Source: this was presented as an example for Weibull growth by Lazim Kamberi, Alejna
Alimi and Senad Orhani: “Nonlinear models by parameters and their transformation” (doi:
10.55059/ijm.2022.1.3/49), see:
www.researchgate.net/publication/361983006_Nonlinear_Models_by_Parameters_and_the
ir_Transformation

This is a good example to show that the “Weibull growth” is not a stable function to fit! 
You need a serious amount of precise data to make a good estimation of the parameters.
To understand this, compare the first graph, obtained with MDLS after 25 iterations:

and the second one, after 200 iterations:
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The curves are almost the same, though the parameter values are very different.  And
after more iterations, they will diverge even more.  The right conclusion is that this model
is not reliable in this case, especially when parameter k is free floating!  Fixing k to a
fixed value might be a good idea, maybe k=1 since there is no reason to believe there
should be an inflection point.

With OLS, there is a better convergence, but that doesn’t mean the parameters are more
reliable.  You can see that from the dotted lines, “worst case scenarios”, based upon the
data imprecisions:
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It might be wiser to just use a simpler model here, like “Plateau - exponential”, with c
fixed to 0, since the concentration starts from 0.

If the last values are in the horizontal asymptote area, as it seems to be, it is safer to use
OLS.  This model predicts a final concentration of 4.32, not very different from the Weibull
model, but this one is 3 times more precise!
MDLS is also stable here, but it predicts a final value slightly above the maximal concen-
tration.  More measurements would be better, to be more sure about this asymptotical
value.
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* Cell aptosis vs microwave field strength with rats (Karadayi 2024).dta1

Variables: x = field strenght (V/m) of 2.45GHz radiation that a number of rats were
exposed to (1h/day during 45 days); y = number of dead cells in slices of bone tissue,
using the so called “Terminal deoxynucleotidyl transferase dUTP nick end labeling”
method (short: TUNEL) that detects DNA fragmentation from aptosis (programmed cell
death).

Source: Karadayi, A. et al.: Does Microwave Exposure at Different Doses in the
Pre/Postnatal Period Affect Growing Rat Bone Development?, in: Physiol Res. 2024 Mar
11; 73(1):157-172.  See: www.biomed.cas.cz/physiolres/pdf/73/73_157.pdf

From the small number of measurements, it’s not sure which model fits best, but a
homographic one (“Rational 2”) makes sense:

Obviously, even such small doses seem to have an adverse health effect.
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* Cereal-crop-yield-vs-fertilizer-per-country.dta1

Variables: x = applied amount of nitrogen fertilizer (kg/ha), y = cereal yield (tonnes/ha). 
For each country, the averages and standard deviations of both variables (error flags!)
were calculated from 2002 to 2017.

Source: https://ourworldindata.org/grapher/cereal-crop-yield-vs-fertilizer-application

If a limit in the yield is expected, models like “Exponential+baseline” or “Rational 2” can be
used.  Since some countries seem to produce near this limit, OLS is preferred here.
The “Rational 2” model predicts a maximal yield of 10.877 tonnes/ha.  Feel free to try
other models.

Note: the pattern is not very clear, since obviously many other variables play a role here,
especially the climate, quality of the seeds, diseases, the soil, etc. etc.  That’s why the
fitting needs a lot of iterations!
Conclusions that can be made here: points above the curve represent countries that are
doing well (Belgium, Netherlands, but especially Oman and the Bahamas since they need
much less fertilizer).  Egypt has good results but uses way too much fertilizer which is
very bad for the soil and the nutricious quality of the crops.  The lowest points are
countries that perform very badly, e.g. Botswana.
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* Chain.dta1

Variables: x and y are the coordinates of points of a hanging
chain (necklace), measured on a photograph (see right). 
Some contrast enhancement and lens correction was done to
ease the measurements.

At first sight, you might think the curve looks like a parabola,
but fitting with a “Quadratic” model shows that it must be
something different.
This is also clear by looking at the residuals: there is a clear
(non-random) pattern visible!

The only well fitting model here, is - of course - the “Chain line” model.
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* Charging_capacitor.dta1

Variables: x = time (t, in seconds); y = voltage over a capacitor that is charged over a
resistor R = 1.03MΩ.

Try the “Plateau - exponential” model to find the source voltage and the capacity!  It will
confirm quite well what the theory predicts.

Since b = RC, we can conclude that the capacitor had a capacitance of 282.6s/1.03MΩ 
274µF.
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* Child mortality UNICEF 1990.dta1

Variables: x = the percentage of the population with access to safe water (1988-90); y =
The under 5 mortality rate (percentage of annual deaths of children under five years of
age, measured in 1990 or the latest available year before then).  The measurement
imprecisions were assumed to be half of the least significant digit.

Source: “A Handbook of Small Data Sets”, by D.J. Hand, F. Daly, A.D. Lunn, K.J. McConway
and E. Ostrowski, Springer 1994, quoting a UNICEF research.  I added one missing x value
for Belgium because I’m pretty sure that everybody had running water at home there in
1990, even my grandparents!

Appropriate model?  Many number crunchers just fit a straight line through the dots
without thinking, but that makes totally no sense if you extrapolate it.
Probably no model is perfect here, since x and y are both percentages, but at least a
power function with a negative exponent makes more sense, if you neglect the parts
where x>100% or y>100%.
Try and compare MDLS and OLS!  MDLS seems way more realistic, especially for high x
values!
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* Coin mass.dta1

Variables: x = number (n) of 2€ coins; y = their total mass (m, in g).

Of course, the linear model is most appropriate here, using MDSL, because there is a
real (invertible) relationship between the number of coins and the total mass.  Notice
however, a small bias of the (cheap) scale: the line doesn’t go through the origin
precisely.  So the slope of this line is a better estimation of the average coin mass than
the one you get from just weighing 29 coins and dividing by 29.
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* Concrete compressive strength vs age - no additives - 192 water.dta1

Variables: x = time (in days) after a specific concrete mixture was made; y = compressive
strength after x days of hardening (in MPa).  The uncertainty on x was unknown, hence
set to 1; the original y values must have been derived from something else (kilograms?)
so the uncertainties were not sure (my guess: 0.01).  Anyway they were probably all the
same, so the absolute values of σx and σy only matter for the parameter uncertainty
estimation.

Source:
data.world/uci/concrete-compressive-strength/workspace/file?filename=Concrete_Data.
xls
The selected mixture had 310kg cement, 192kg water, 970kg coarse aggregate, 850kg fine
aggregate, no additives.

A fitting model should obviously start from the origin, since concrete starts from a muddy
mixture, and a horizontal asymptote: the maximal strength after a long time.
“Rational 1” seems to fit quite well.
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* Concrete compressive strength vs cement - no additives - age28.dta1

Variables: x = amount of cement (in kg) in a 1m³ concrete mixture; y = compressive
strength after 28 days of hardening (in MPa) (see previous example).  The uncertainty on
x was set to 0.1 since many of the measurements were measured with that precision.

Source: see previous file.  Mixtures without additives were selected; the amount of water
varied between 146-203kg, coarse aggregate: 838-1125kg, and fine aggregate: 594-945kg.

A fitting model should obviously start from the origin, since no cement = no concrete.
The “Power” model suggests a more or less quadratic relationship (lower exponent if you
use OLS), but it’s clear that other variables play a role here.  E.g. most of the points
above the curve have less water than those below (click “Show labels” to see this).
The “diode” model produces almost the same curve.
It would be more interesting to have measurements from mixtures with more cement. 
What would happen then?  A maximum???  Anyway the model is not much extrapolatable
anyway because there is only a limited amount of cement that can go in 1m³.
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* Concrete-compressive-strength vs water-cement ratio age28 no add.dta1

Variables: x = ratio of the amount of water and the amount of cement (both in kg) used in
a concrete mixture; y = compressive strength after 28 days of hardening (in MPa) (see
previous example).  The uncertainty on x was calculated assuming the uncertainty on the
masses was 1.

Source: see previous file.  Mixtures without additives were selected; the amount of water
varied between 146-203kg, coarse aggregate: 838-1125kg, and fine aggregate: 594-945kg.

A fitting model should obviously start from the origin, have an optimal value and then go
back to zero, since no water or too much water = no concrete.  A model that has this
behavior, is “Power Exp.decay”.  Since there are no data from the actual peak, it’s best to
fix parameter n to a simple value like 1.
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* Cooling_of_water_cooker.dta1

Variables: x = time (t, in minutes); y = temperature (T, in °C) of the water in a cooker,
measured with a bad thermometer in the cooker itself.

Try the “Exponential + baseline” model!  And MDLS since there is a real relationship
between the time and the temperature (Newton’s cooling law).
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* Cotton yield vs K conc Morteza Mozaffari.dta1

Variables: x = cumulative (3-year) fertilization with potassium (K) rate (in kg/ha); y = total
3-year yield (kg/ha) of cotton on this field.  The σx,i and σy,i values were estimated here
only from the measurement precision, not taking into account the yearly variability, so
the estimation of the precision the parameters will be too good.

Source: Morteza Mozaffari: www.scirp.org/journal/paperinformation.aspx?paperid=85771

Many models will give a reasonable fit, but only those with a horizontal asymptote
(“Logistic + baseline” with b=0, “Exponential + baseline”, “Plateau minus exponential”,
“Rational 2”, “Transition”) make sense, since the effect of more fertilization disappears
once the plants have enough.  The logistic and transition models are the most logical,
since on the left side it goes to negative values of fertilization.  My guess is that that part
of the graph might give an indication of the amount of potassium in the soil without
fertilization; that’s for the agricultural engineers to investigate.  The limit value L =
10841kg/ha is the maximum possible yield according to the logistic model.
The convergence is very slow here, because the points are too much aligned.  It would
have been better to do at least one more measurement with more fertilizer.

Remark: Here you can find similar data from all countries:
https://ourworldindata.org/grapher/cereal-crop-yield-vs-fertilizer-application
But, these data are not useful to determine the right model, since all the possible
influences are mixed together here: each country has a different soil, climate, cereal
species, etc.; each year has different weather etc.  Also: these measurements do not
include the very important reference: the yield without fertilization.
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* Diode Si 1N4007.dta1

Variables: x = voltage (in V) over a silicon diode (type 1N4007), y = current through it (in
µA).  
The voltage was measured with an Ohmeron MT488B in the range 0..4.000V.  The
accuracy according to the manual should be 0.5%+4 counts = 0.5%+0.004V.
The current was measured with an Owon OW18E multimeter.  
Accuracy in the 200.00µA range: 0.5%+10 counts = 0.5%+0.1µA.
In the 2.0000mA range: 0.5%+1µA; 20.000mA range: 0.5%+10µA; 200.00mA range:
0.5%+100µA.  The “10 counts” are certainly not exaggerated, since the displayed values
went up and down quite a lot.

The appropriate model here is “Diode”.
This predicts a maximal reverse current of 0.0146µA, which is better than the datasheet
gives as “worst case” at 25°C: 5µA when 1000V is applied.  Direct measurement with a
reverse voltage of 12V gave a value of less than 0.01µA (unmeasurable).
See: https://www.diodes.com/assets/Datasheets/ds28002.pdf
Remark: if you do the measurements with reversed voltage, you will see some current in
the order of 1µA, but that is due to the internal resistance of the multimeter (usually
about 10MΩ), so don’t do that.
Since the measurements were relatively precise, OLS and MDLS don’t differ much.

The same measurements were done with a germanium diode and a white LED, but they
don’t fit in the “ideal diode” model at all!  You can try with these data files:
* Diode Ge OA72.dta1
* Diode White LED.dta1
A possible explanation might be that the temperature at the pn junction raises
significantly, even with a few mA of current, so the parameter b changes.  This is difficult
to measure, but keeping the diode temperature as constant as possible (using cooling
equipment) might possibly help.
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* Driving times vs distance.dta1

Variables: x = distance from my home, by road, in km; y = average driving time according
to Google Maps (start 8am on a working day, σy = half of the difference between the
longest and shortest time).
You can try the “Linear” model, but don’t forget to fix b = 0 since zero distance is always
zero time.  If you doubt to use MDLS or OLS, ask yourself if it is ok to ask the inverse
question “How far can I drive in a given time span?”.  Of course that’s ok, so use MDLS!

But, you will see that the “Power” model (with b < 1) fits better!  Why?  For longer dis-
tances you will usually drive more on highways, which increases the average speed and
hence decreases the driving time.

Try also OLS if you want to see the dramatic difference!
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* Electrical current from wind.dta1

The experiment: On a windless day, a simple small computer ventilator was kept outside
the window of a moving car, perpendicular to the driving direction to catch the wind
maximally.  It was attached to an Ampere meter.  (Not so easy to do this precisely, I can
assure you!)
Variables: x = the speed of the car (v, in km/h), y = current (I, in mA).

Theoretically, the generated power (P) should be  v³, and P=RI² (R = internal resistance
of the meter), so I  v1.5.  But also the characteristics of the ventilator (not designed to be
used as a generator) play an unknown role of course.
See: https://en.wikipedia.org/wiki/Wind_power
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* Eurovision Song Contest 2022 jury vs tele.dta1
* Eurovision Song Contest 2022 tele vs jury.dta1

Variables: x = points given by televoting, y = points given by the jury at the Eurovision
contest of 2022.  Vice versa in the second file.
Source: https://eurovisionworld.com/eurovision/2022

If the points were given completely honestly, one would expect more or less y  x, but in
reality the correlation was weak: the dots in the graph are very scattered.  It is possible
to find a linear estimation of the relationship between x and y, but definitely use MDLS!  If
you use OLS, switching x and y will produce ridiculous differences, see:
https://www.researchgate.net/publication/360620480_Another_example_why_multidirecti
onal_regression_is_better_than_OLS_the_2022_Eurovision_Song_Contest_points

The graph on the
right summarizes
it:

84



* Examination scores vs completion time.dta1

Variables: x = time to complete an exam (in seconds); y = score (max = 75).

Source: “A Handbook of Small Data Sets”, by D.J. Hand, F. Daly, A.D. Lunn, K.J. McConway
and E. Ostrowski, Springer 1994, quoting an example from I. Basak et al. (1992).

This is a typical example of a cloud of points in which you can recognize nothing or
whatever you want (a line, a power function,...).  MDLS and OLS give very different results 
since there is no clear pattern.
Kendall tau = -0.069 (click “Show” in the “Report” section), meaning that there is a very
small downward trend in the data, but forget about making any other conclusion.
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* Extrav-Q4.dta1
* Extrav-Q49.dta1
* Extraversion Q4-Q49.dta1

These data come from a questionnaire by Yam Peleg, that was made to find out if the
answers to certain questions was related to a self-attributed extraversion rating:
www.kaggle.com/datasets/yamqwe/introversionextraversion-scales.

The questions I selected Q4: “I would hate living with room mates.”, and Q49: “I really like
dancing.”.  In the first two files, x = answer to these questions (“disagree”... “agree”,
converted to -2..2) and y = extraversion rating (-1 if the person perceived himself as
introvert, 1 if extravert, 0 if he didn’t know).
In the third file, Q4 and Q49 are compared.

To avoid overfitting, only the most basic models can be used, like a linear one through the
origin.  All relationships are quite weak with very small Kendall tau and Pearson r values. 
For example:
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* Falling pear.dta1

Variables: x = time (t, in seconds); y = vertical distance a pear fell down (s, in meters).
The measurements were done from a long exposure photograph while using a stro-
boscopic flash.  Newton did it with an apple, but it works fine with a pear too!

Try the “Quadratic” model to find the value of the gravitational acceleration g (=2a)!
The meaning of c is here: the time the pear was already falling when the first flash was
fired, and b was the velocity at that moment.

We can now predict that afters 10 seconds,
the pear would have fallen 503m and have a
speed of about 99m/s.
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* Filter 1 RLC.dta1

Variables: x = frequency of a (more or less) sinusoidal signal; y = fraction of the voltage
that passed through a serial RLC filter, i.e. Uout/Uin, with Uout measured over the resistor.
The signal was taken from the headphone exit of a laptop pc, and generated with the
Windows beep function (e.g. in Delphi Pascal: “beep(500, 10000);” generates a signal with
a frequency of 500Hz during 10000ms = 10s).  The voltages were measured with a simple
multimeter (OWON OW18E).

The values of L and C shown on the schematic, were given by the manufacturer; R was
measured.

The appropriate model for this bandpass filter is “RLC serial filter”.

From the fitting we can derive:
* The internal resistance of the coil: r R = 0.5352  621.3 = 332.5Ω (measured with the

multimeter: 332.6Ω);
* the value of C = 1/(2πR b) = 1.08278µF (measured with multimeter: 1.0908µF, according

to manufacturer: 1.0µF);
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* the value of L = a R/(2π) = 102.25mH (according to manufacturer: 100mH; not possible
to measure with most simple multimeters.)
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* Filter 2 RL.dta1

The setup was the same as the previous one, but without the capacitor.

We can use the same model, and the fit will normally converge to a very small b value. 
But it’s better to set b = 0, or easier: select the model “RLC serial filter - preset RL”.  Now
you can use MDLS, since there is no peak.

This fitting allows you to determine the value of L, without the need for an expensive
multimeter.  L = a R/(2π) = 107.23mH (slightly different from the first measurement using
the RLC filter and OLS).
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* Filter 3 RC.dta1

Same setup as “Filter 1 RLC.dta1”, but without coil.

Using the model “RLC serial filter - preset RC”, you can determine the value of C if you
don’t have a multimeter with this feature.

C = 1/(2πR b) = 1.072µF, almost the same as in the first measurement (RLC, OLS).
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* Food vs total expenditure 2017.dta1

Variables: x = total customer expenditure in US$ per person, 2017; y = expenditure  for
food (bought for consumption at home).  Nothing about the error margins was known, so
the errors were set proportional with the values (1%), which makes more sense here
than setting the absolute errors the same.

Source: https://ourworldindata.org/grapher/food-expenditure-share-gdp

Since y can never exceed x, and rich people spend a smaller fraction of their income to
food, a logarithmic function (shifted through the origin) seems a good model candidate.

A power function seems to fit nice too, but that has the theoretical problem that it is
always infinitely steep in the beginning, which means that y > x for a while.

92



* Friction of chairs on floor.dta1

The purpose of these measurements was to determine the dynamic friction coefficient µD

of rubber on ceramic tiles.  This was done by dragging chairs (with some kind of plastic
(?) caps on their legs) over a floor.
Variables: x = mass of the dragged object (1, 2, 3 or 4 chairs on top of eachother) (in kg); y
= the pulling force.  Actually both were measured with the same dynamometer, calibrated
in kg (a simple luggage scale), so to get the forces (pulling force and weight) in Newtons,
we should multiply by 9.81, but that isn’t necessary since µD is the ratio of both.
Only 1 chair was weighed, with a precision of ±0.1kg, so the error on the mass of n chairs
was ±n 0.1kg.  When doing this measurement, make sure the speed is as constant as
possible (in that case: friction force = pulling force), so the reading will be constant too.

As expected, a linear relationship with b=0 fitted through the data within the error mar-
gins.  The value obtained: µD  0.233 ± 0.023, seems realistic.
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* Happiness vs income.dta1

Variables: x = median level of income or consumption per day ($), 142 countries, 2019, y =
“Life satisfaction” in the Cantril Ladder scale (0..10).  For some countries, one of the
previous years was used.

Source:
World Happiness Report 2022
ourworldindata.org/happiness-and-life-satisfaction
ourworldindata.org/grapher/daily-median-income

There is no physical law telling us what to expect of the relationship between money and
happiness, so we have to experiment with models that make sense.

E.g. the logistic model with fixed parameters a = 10 and b = 0:

The happiness of the poorest countries seems to be overestimated here.

The “transition” model can be tried too.  To obtain the same limits, we have to fix m = 5
and  a = 5.  This fits better with the poorer countries.
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But, who says that everybody will be super happy if they only make enough money?
The “Rational 2” model with all parameters free, seems to fit well too.  And it predicts an
ultimate happiness average of 8.7 if everybody is very rich.  Of course, the left part of the
curve (negative income, to be interpreted as debts?) makes less sense.

There is another model that seems to fit well: the “Logarithm shifted through 0”, but then
the assumption is: zero income = zero happiness...
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The problem with this model is that it has no horizontal asymptote, so f(x) will eventually
become more than 10 , which is impossible.

But... try the Weibull growth model!  That is probably the best!
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* Heart beat land mammals - Mortola 2015.dta1

Variables: x = mass of a (terrestrial) mammal (m, in kg); y = its average heart beat (in
pulses per minute).  The uncertainties on the values were not known, so we assumed
them to be half of the last significant digit.

Source: Jacopo P. Mortola: “The heart rate - breathing rate relationship in aquatic
mammals: A comparative analysis with terrestrial species”, in: Current Zoology 61 (4):
569-577, 2015.  https://academic.oup.com/cz/article/61/4/569/1803113

Since this is mainly a scaling relationship (like: big clocks have a lower resonance
frequency), the “Power” model is probably the most appropriate.
Using MDLS we get an exponent of -0.21.  OLS differs dramatically, unless the use of the
x-uncertainties is switched off, but then we cheat, since the measurement errors are a
reality.  The culprit: the first to data point have a big weight since their x and y values are
very precise, and by chance they happen to be “abnormal” (the second point has a bigger
x and yet a bigger y), so the curve is pulled upwards enormously.  MDLS however, knows
how to deal with this!

Some of the dots are in red, why?  Those are the measurements that were taken from
sedated animals.  It’s quite obvious that that has an influence, so this seems a good
reason to me to consider them as “outliers”, so I set them “inactive”.
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* Heart rate after exercise.dta1

Variables: x = time (in s) starting from the end of a physical exercise; y = heart rate (beats
per minute) measured with a simple sports watch with chest band (Kalenji Onrythm 110).

After an exercise, the heart rate will go back to normal after some time.  This time is
used as an indication for the condition of the person; the shorter the time, the better.  See
for example:  https://www.ahajournals.org/doi/full/10.1161/JAHA.117.008341

This process of “going back to normal” can well be modeled with an exponential function:

This should give better results than individual measurements e.g. after 10 or 60s,
because, as you see, there can easily be some “ups and downs” in the measurements
(due to bad contacts of the sensor? or unknown physiological or psychological events,
etc.).  Fitting reduces this kind of errors maximally.  Because of this “noise”, OLS is
recommended here above MDLS.
As an indicator for the heart rate recovery
you could take several parameters:
- the starting value minus the predicted

value for x=60 (or whatever time span you
want);

- the slope at t=0 (here -0.582);
- the time span needed to go back half the

way to normal (here 49.9s);
- the parameter a (here 0.98621), which says how much the rate drops every second

(here 1-0.98621 = 0.01379 = 1.379%).
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* Height_distribution_adults_USA.dta1

Variables: x = height  (h, in classes per cm); y = frequency of each class.  The sample con-
tains data from 14088 adults from the USA.

Source: NHANES

This looks like one peak, but the “Added Gauss” model will be able to distinguish two
mixed groups (approx. the same size: 44.1±7.1% and 55.9±7.1% of the total) with averages
that differ by 13.59cm, i.e. most probably the men and the women.
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* Height_boys_12_18.dta1

Variables: x = height  (h, in classes per cm); y = frequency of each class, in a mixed group
of boys ages 12 and 18.

Source: NHANES

Try the “Added Gauss” model to find out how much boys grow on average between 12 and
18!
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* Height_boys_15.dta1

Variables: x = height (h, in classes of 1cm); y = frequency of each class among 15 year old
boys.  For the uncertainties of the y values, the square root is used, because they are
samples from a population.  For the few y=0 values, an uncertainty of 1 was used; there
seems to be no consensus about this practice, but it seems not implausible.  See, e.g.:
www.science20.com/quantum_diaries_survivor/those_deceiving_error_bars-85735

Source: NHANES

Try the “Gauss” model to find the average and standard deviation!

(Graph options: check “data bars” and set “size of data points” to 0.)
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* Height_of_gutter.dta1

Variables: x = distance (x, in meters, measured from a closest point) to a tall object; y =
angle of observation (α, in °) of a high mark on the object (in this case: the gutter of a
house).
The purpose of the measurements is to determine the height of the mark (above the eyes
of the observer).

The “Parallax” model was designed for this!

Remark: you might notice that the “exponential” model fits nicely too, but... you will see
that it makes no sense if you extrapolate to the left: the curve keeps going up nicely even
if you go to negative x values, while in reality the angle can never exceed 90°!
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* Hot_stone_water.dta1

Variables: x = time (t, in minutes, starting when a hot stone is dropped in a bowl of water
at room temperature); y = Temperature of the water (T, in °C).

Try the “Double Logistic + baseline” model to see the pattern.

The “skewed peak 2” model even seems to fit better:
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* Income distribution Belgium 2019.dta1
* Income distribution of households USA 2020.dta1

Variables:
x = income class, y = number of people in that class.

Sources:
statbel.fgov.be/nl/themas/huishoudens/fiscale-inkomens/plus
www.census.gov/data/tables/time-series/demo/income-poverty/cps-hinc/hinc-06.html

As expected, these data don’t look normally distributed.  They look more like a mixture of
different skewed peaks, especially the belgian data, since there are employed people
(with minimum wage), unemployed people (usually receiving about 800...1300€ monthly),
self-employed people (who often struggle to survive and might even have negative
incomes, but those are hidden from the statistics), retired people,...

A Dagum distribution with p = 2 fits reasonably with the right tail of the belgian data, but
of course not with the left side:

(Choose the graph option “data bars” to get the graph in this form.)
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The American data fit better, but on the left side is also something wrong:
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* Internal_resistance_9V_battery.dta1

Variables: x = load resistance (R) parallel with a 9V battery, y = Voltage (U) over the
resistor.

The smaller R, the more U drops due to the internal resistance of the battery Rb. 
Theoretically U = U0 R/(R+Rb) with U0 the voltage if no resistor is attached (R = ), so the
“Rational 1” model is appropriate to determine Rb (= parameter b).

Warning: the last two voltage measurements were the same (8.81) due to the lack of
precision of the voltmeter, which makes it a bit harder for the MDLS algorithm to
converge, but it will work if you keep the lower limit for parameter a (= U0) at 8.81.  Notice
that the OLS algorithm will predict 9.029 for the final voltage, which is just impossible! 
MDLS predicts a very plausible 8.827!
The predicted values for the internal resistance differ significantly too:
MDLS: Rb = 7.4 ± 1.4Ω, OLS: Rb = 9.97 ± 0.78Ω.
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* Janka hardness vs density of eucalypt wood.dta1

Variables: x = density (in the old Anglo-saxon unit system: lb/ft³) of Australian Eucalyptus
wood types; y = hardness on the scale of Janka, see:
https://en.wikipedia.org/wiki/Janka_hardness_test

Source: E.J. Williams (1959), quoted as example 334 in “A Handbook of Small Data Sets”,
by D.J. Hand, F. Daly, A.D. Lunn, K.J. McConway and E. Ostrowski, Springer 1994.

A power function fits the relationship reasonably well:
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* JPG-Red_vs_coffee_concentration.dta1
* JPG-Green_vs_coffee_concentration.dta1
* JPG-Blue_vs_coffee_concentration.dta1

Variables: x = coffee concentration (c), in spoons from a strong reference mix, in a full
glass of water; y = red/green/blue value (0..256) in a JPG image taken with a mobile
phone camera from the solution with indirect sunlight going through the glass.

The more spoons of coffee powder in a bottle, the darker it becomes.  But the tone map-
ping algorithm in the camera influences the curve.

Try the “Logistic” model (with fixed b = 0) to calibrate the camera as a concentration
measuring device!

108



* Life exp vs health spending CH.dta1
* Life exp vs health spending JAPAN.dta1
* Life exp vs health spending USA.dta1

Variables: x = health expenditure per capita (2010 int.-$), y = life expectancy (years), for
Switzerland, Japan and USA 1970-2015.

Source of the data:
ourworldindata.org/the-link-between-life-expectancy-and-health-spending-us-focus

The fit with the “Rational 2” model is quite good, but so are the logistic (baseline 0) &
transition models, and the “plateau-exponential” and the Gompertz growth (baseline 0). 
You could try other models like linear and quadratic, but you will see how stupid that is if
you look at their predictions for x going to infinity!

The models that make sense predict an average life of about 58 to 67 years without
medical costs (= f(0)), and about 84 to 89 with unlimited expenses, which makes more or
less sense.

109



* Lifetimes_pressure_vessels.dta1

Variables: 
The original data were 49 ages of pressure vessels when they broke down (in hours).  In
the source text, a distribution was calculated by grouping them in 7 classes.  Then a
Weibull distribution was fitted through these 7 numbers.  However, doing this, a lot of
information is lost.  What I did, conserves all the information: x1 = the time when the first
vessel broke, y1 = 1; at time x2, the second vessel broke, y2 = 2, and so on: yi = the total
number of broken vessels.  I assumed the same error (1 hour) for each time value.  For
the y values I used the usual square root.  Now we have to fit with the cumulative
distribution of course (the “Weibull growth” model).

Source: 
“An introduction to generalized linear models”, 2nd ed., by Annette J. Dobson, Chapman &
Hall/CRC, 2001, chapter 4.2: Example: Failure times for pressure vessels.
This can be found here:
www.academia.edu/18454337/AN_INTRODUCTION_TO_GENERALIZED_LINEAR_MODELS

The text above recommends to use the Weibull distribution with k = 2.
Since the last data points are probably in the horizontal asymptote area, it might be safer
to use OLS here.  MDLS produces a slightly higher value for parameter a.
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* Lynx.dta1

Variables: x = time (years since 1820), y = number of Canadian lynx pelts traded by the
Hudson company.  If we use this number as an indicator for the total lynx population, we
can use the square root of each number as an estimation of the uncertainty.

Source:
Charles Elton and Mary Nicholson: “The Ten-Year Cycle in Numbers of the Lynx in
Canada.” (Journal of Animal Ecology, vol. 11, no. 2, 1942, pp. 215–44. JSTOR,
https://doi.org/10.2307/1358).  It can be downloaded here:
jxshix.people.wm.edu/2009-harbin-course/classic/Elton-1942-J-Anim-Ecol.pdf

The “Sine wave with harmonics” model with just the main wave and the first harmonic
(half period) might serve reasonably to model these data:

But also the “Periodic peaks” model fits reasonably.  The difference is that the peaks are
symmetrical and the curve is a bit flatter between the peaks.
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* Masks.dta1

Variables: x = time in weeks starting from 22 oct. 2020; y = the fraction (p) of adults
wearing masks on the street (where it wasn’t obligatory, in my neighborhood).
The data were grouped per week to have enough observations (n) to calculate the σ =

(p (1-p)/n).

Try the “Constant” model to calculate the weighted average and its standard deviation. 
You might look for a trend by using the “Linear” model, but extrapolating doesn’t make
much sense, since there is no obvious causal relationship.  That’s also why MDLS doesn’t
make sense here.
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* Mobile phone usage.dta1

Variables: x = time (calendar year), y = mobile cellular subscriptions per 100 people; the
uncertainty on the y data was unknown (set to the same value 0.001).

Source: International Telecommunication Union (ITU) World Telecommunication/ICT
Indicators Database (https://data.worldbank.org/indicator/IT.CEL.SETS)

Since we might assume this is an example of a transition from zero to a certain
“saturation” value, a logistic model (with b = 0) is plausible.

If this model reflects the reality, we are now (2024) near this saturation level.

The “Transition” model also fits reasonably but you can’t force that to start from zero. 
“Gompertz growth” fits clearly worse.
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* Noble prizes and chocolate.dta1

Variables: x = chocolate consumption (kg/year/capita); y = number of Nobel laureates (up
to the year 2018) per 10000000 inhabitants, for 27 countries.

Source: Aloys Leo Prinz: “Chocolate consumption and Noble laureates”, Social Sciences &
Humanities Open, Volume 2, Issue 1, 2020, 100082
www.sciencedirect.com/science/article/pii/S2590291120300711#bib22
en.wikipedia.org/wiki/List_of_countries_by_Nobel_laureates_per_capita

Eating chocolate seems to be good for your intelligence!  Seriously?  I quote: “It remains
unclear whether the correlation is spurious or an indication for hidden variables.”

Anyway, you can try with a linear model (MDLS and OLS will differ a lot since the data
points are more forming a cloud than a straight line).
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* Pendulum.dta1

Variables: x = time in image nrs (1/60s); y = horizontal position (in cm) of a swinging
object on a rope, the equilibrium position was 100cm on my ruler.

From the physical theory, the “Damped sine wave” model will give the best fit, of course.
A good starting value for the period can be derived from the consecutive passages
through the equilibrium position around t=6500, but the “Guess” button will do it easier!
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* Pendulum variable length.dta1

The bigger the length (l) of a pendulum, the bigger its period (T):

T 2
l

g

2

g
l a lb     

with ideally: b = 0.5.
If you measure some periods, you can calculate g from the obtained best fitting a.

I did some measurements with a small metal object on a very thin rope.
Variables: x = length (in mm) from attachment point to the center of gravity of the object;
y = average period (in s) of about 20 cycles.

From the fitted value of a, g can be calculated:
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This is a bit below the expected value on the location of the experiment (Gentbrugge,
Belgium), but that may be because the construction was not sturdy enough.
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* ping7.dta1

Variables: a million ping tests were done from my pc to a local IP address; x = the
response time, rounded to 1µs, and y = the number of times this response time occured.

The result seems to a mix of different skewed distributions.  You can try to fit the dif-
ferent peak functions but none of them describes the data perfectly of course.  The
“Skewed peak 1” fits reasonably well.
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* Planet orbits.dta1

Variables: x = distance (semi-major axis) to the Sun (d, in AU = Astronomical Units); y =
orbit period of the planet (T, in days).  Kepler discovered that T d1.5 (his “third law”).

Source: Wikipedia, who quotes from NASA obviously.

This law is pretty precise, as you can see:

Still, the high χ² values indicate that there are some other factors influencing the periods.
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* Population_Nigeria1950-2022.dta1

Variables: x = time in years starting from 1950 (so x=60 means the year is 2010); y =
population of Nigeria.  The error on x was set to 0.5 since there was no information about
the exact time of the year the population was counted.

Source: www.statista.com/statistics/1122838/population-of-nigeria.

Usually, populations tend to show an exponential growth if there is enough food and
space.

Try the “Exponential” model to check this.  Block the
baseline (c) to 0, since there is no reason to expect it to
be different from 0.

You can see that the “Quadratic” and “Cubic” models
also fit well, but their extrapolations make no sense.
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* Powder flowrate (Flowlac90).dta1

Variables: x = diameter of a hole were a powder was falling through (in mm); y = flow rate
(in g/s).  The powder was a kind of lactose, called “Flowlac90” from Meggle Pharma.  The
measurements were done with a device from Granutools.

Source:
www.news-medical.net/whitepaper/20190910/A-Guide-to-the-Flowability-Classification-
of-Lactose-Powders.aspx

In a reasonable approximation, the data fit with the “Power with horizontal shift” model
with b = 2.5, according to the so-called Beverloo’s law.  The c parameter is supposed to
be the size of the powder particle, but strangely, the fitted value is negative (with MDLS,
and even more negative with OLS), not 0 as mentioned in the article.

The strange result might be explained by the simplistic model assumptions that the
particles are round and without mutual attraction (cohesion).
Improved models have been suggested, e.g.:
www.unav.edu/documents/15083165/15313444/agm1_TGF07.pdf/f6b4d24e-b200-5dce-37b
2-6495ca536370

Or... and this makes more sense to me: the flow rate could just be proportional to the
square of the diameter.
It fits ten times better, and c becomes positive:

121



122



* Pressure_vs_temperature_in_jar.dta1

Variables: x = temperature (θ, in °C) in a closed jar; y = pressure of the air inside (p, in
hPa).
The measurements were done with very simple home equipment: a multimeter with a
thermocouple (wide range but not very precise) and a trekking barometer.

Use the “Linear” model and the ideal gas theory to find the value of the absolute zero
temperature (0 Kelvin = ...°C) as the intersect with the x axis (the “derived parameter”
“zero” z=-b/a)!  Definitely use the MDSL algorithm since p and T can both be dependent or
independent variable.
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* Pure water conductivity vs T.dta1

Variables: x = temperature (θ, in °C); y = conductivity (k, in µS/cm) of pure water.

Source:
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)#/media/File:Conductivity_of_Pure
_Water.svg

The conductivity of water (pure or with dissolved products) increases with temperature,
since the ions move faster.  Even in pure water, there are some ions because of the
dissociation of the water molecules.
The relationship of k vs θ (or absolute temperature T) looks a bit like exponential, but a
Gompertz growth function fits much better:
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* Radon220 decay.dta1

Variables: x = t = time in seconds; y = N = counts from a Geiger counter near a short living 
radioactive source (Radon-220).  σx = 2 because the count intervals were 4s.  σy = y
since it is a count.

Source: measurements done at the University of Amsterdam, kindly provided by Frank
Fokkema.

As expected, the “Exponential+baseline” fits well.  Parameter c is the background radia-
tion.  The derived parameter “half-life” = 52.2 ± 1.2s.  According to Wikipedia this should be
55.6s, but Brittanica says 51.3, see:
https://www.britannica.com/science/radon#ref237175
Since the data contain many points in the asymptote area, with a lot of noise, OLS is
recommended.
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* Refraction_polystyrene.dta1

Variables: x = incoming angle (α1, in °, measured with a simple protractor); y = angle of the
refracted laser beam (α2, in °) going through a cd box (made of polystyrene).
The laser pointer had a wavelength of 532nm.

If you use the “refractive index” model and multidirectional fitting, you will get a good
estimation of that index (should be 1.5983 according to www.refractiveindex.info).
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* Rivers.dta1

Variables: x = drainage basin surface (A, in km²) of a river; y = flow rate (Q, in m³/s).

Source: Wikipedia

A big surface collects more rain, causing a higher Q, but is there an exact relationship?

The the “Power” and the “Logarithm shifted through 0” both make sense!

You see, it doesn’t fit very well, because other variables like rainfall and temperature play
a big role.  The dot high above on the right, from the Amazon, shows that this river must
have a lot of rainfall.
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* Running records.dta1

Variables: x = distance in meters; y = fastest running time (world record) for that
distance.

Source: Wikipedia.

At first sight, you might expect a linear relationship, since the time needed is proportional
with the distance, but a runner is not a car or a train, a runner gets tired...  So better try
the “Power” model.  You will find that the exponent is not 1, but a bit higher.

Notice the big χ² values, even though the curve fits very nicely.  Why are they so big? 
Well, the given σx and σy values are the precisions of the distance and time measure-
ments here.  χ² would be much lower if the y and σy values would be averages and
standard deviations of a group of random runners.
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* Running speeds ultra-marathons men.dta1
* Running speeds ultra-marathons women.dta1

Variables: x = center of an age group in years (e.g. for ages [40, 50[: x = 45±5), y = average
running speeds for 100km ultra-marathons ± SD in km/h.

Source:
Angelika Stöhr et. al.: “An Analysis of Participation and Performance of 2067 100-km
Ultra-Marathons Worldwide”, Int. J. Environ. Res. Public Health 2021, 18(2), 362;
https://doi.org/10.3390/ijerph18020362 or https://www.mdpi.com/1660-4601/18/2/362

I had no idea that so many 90+ people could still run 100km, but apparently they do, and
not even that much slower than younger people.
The “Skewed peak 2” model fits nicely, with d = 0 (we suppose that the speed must come
to zero at a certain age).

Warning: there are 5 parameters involved and only 8 data points, so the risk of overfitting
is real here.  I wouldn’t trust any extrapolation of the curve, neither left or right!
I expect the fit would be more realistic with the raw data, not grouped.

These are the results for men:

and for women:
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A model that produces a bit more realistic behavior for early ages, is “Power Exp.decay”:
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* Salt_water_G_vs_f.dta1
* Salt_water_conductivity_800Hz.dta1

Variables: y = conductivity of water with salt, measured with a simple probe (a recycled
European 220V plug); in the first file: x = frequency produced with laptop, taken from the
audio output, with a salinity of 0.52g/l; in the second dataset, the frequency was kept
constant (800Hz) and x = salinity in g/l.  The measurements were done by myself.

The first one shows a strange pattern; the 2pt. moving average looks like this:

The second one shows a nice pattern that can be approximated by a Weibull growth
function, precisely enough to be used as a calibration for the probe.  You can convert a
measured conductivity to a salinity with it.

Also try the logarithmic function shifted through the origin; it fits almost as good.
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* Shoe sizes adult men.dta1
* Shoe sizes adult women.dta1

Variables: x = height in cm of a person, y = (European) shoe size.
Since the heights were rounded to 1cm, the “error” on x was set to 0.5.  The shoe sizes
are mostly whole numbers, so someone’s “best fitting” shoe size could also be 0.5 higher
or lower.

Source: The data were collected by myself from mainly Belgian and Dutch people on
social media in Feb. 2023.

 
A linear model with b=0 (since 0 height = 0 shoe size) fits well.  Here are the women:

The graph option “transparent points” was chosen, so you can see which measurements
occured multiple times (darker points).

The “power” model is worth trying too, since it might be that feet lengths and heights are
not perfectly proportional!  You will definitely notice a difference between OLS and MDLS
then!

Remark

If you save the graphs of the men and the women with the same scales, you can open the
SVG files with a plain text editor like Windows Notepad, change the color settings in one
file, and then copy and paste the code parts where the dots and lines are drawn into the
other file, you can obtain a composite graph like this:
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* Smoking - adolescents Germany.dta1

Variables: x = time (year); y = percentage of adolescents smoking.  Since we didn’t know
at what time in the year the survey was done, or when people started or stopped
smoking, σx was set to 0.5, so x can be interpreted as “the middle of the year ±0.5 year. 
Looking at the percentages, we can guess σy to be 0.05, or safer 0.1.  Anyway if all the
errors are the same, the absolute value will not influence the parameters, only the
parameter confidence interval estimations.

Source:
https://www.destatis.de/EN/Themes/Society-Environment/Sustainable-Development-Ind
icators/Publications/Downloads/data-relating-indicator-report-2021.pdf?__blob=publicati
onFile

This is a typical example that might be modeled with a logistic function: a change in
behaviour caused by an external stimulus (government campaigns against smoking).

The “Logistic with baseline” model (with MDLS) predicts that the percentage will even-
tually go from 27.1 to 4.33.

You might also try the “Transition” model.  That predicts a percentage going from 29.6 to
5.27.
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* Sponge-ruler.dta1

Variables: a rectangular dry sponge was placed on a weighing scale, and then a ruler
was pushed in slowly step by step vertically, in the middle of the top side of the sponge
(height: 90mm).  Variable x = distance (in mm) that the ruler was pushed in; y = m = the
mass given by the scale (in grams).  So the force F in Newtons was given by y/1000 9.81. 
The last measurements (with m > 1kg) were unreliable since the sponge started to show
plastic (inelastic) deformations.
Although the resolution of the scale was 1g, I estimate the error on the mass
measurements to be about ±10g, since it was very difficult to keep the ruler totally stable,
and hence the reading fluctuated a bit.  A mechanical construction would improve the
precision here.

Fitting the data with a power function, produced an exponent very close to 1, which
suggests that the sponge obeyed Hooke’s law, at least if you don’t press it too hard.

136



* Sunspots-monthly avg.dta1

Variables: x = time in years (1818-2021); y = monthly average of the daily counted sunspot
number (& standard deviation of that average).

Source: WDC-SILSO, Royal Observatory of Belgium, Brussels,
See: www.sidc.be/silso/infosnytot

This is a tricky one!  You clearly see a periodic pattern, but it is not very constant.
The “Sine wave with harmonics” model will fit reasonably, but only if you start with a good
estimation of the period: T 10.9 years (limits 10.7 and 11.1).
For the amplitudes of the main wave and the first harmonics A, B, C & D, you can enter 1
and limits 0 and 100; for the phase shifts c, d, e, f you can start with 0 and limits -6 and 6.
It will take a few thousand iterations to get a stable fit, and a long calculation time for the
precision estimation of the parameters.

This is a good example to show the advantage of subtracting the biggest part of the time. 
It the original file, the time was given in years AD.  In that case, a very small deviation
will give an enormous difference after 1800 years, so you get convergence for many
other starting values for T (even 10.8 or 11.0).  With 10.9 it converges to 10.87568 with the
lowest χ² value, but that’s hard to find out.

You can see this if you click on the parameter T panel:
S goes wildly up and down around T = 10..11.
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You may also try the “Periodic peaks” model:

As you can see in the S vs T graph, the number of
peaks (the minima are possible T values) has gone
down dramatically because 1800 was subtracted from
all the years.

Since the periods and amplitudes clearly differ from
time to time, the model is absolutely not perfect, but
it might give reasonable predictions.
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* Survival chances Men Belgium 2020.dta1

Variables: x = age (years), y = the average number of men that will survive until that age
(Belgium, 2020).  No standard deviations were available, so the “errors” on x and y were
simply set to 0.5 and 1, which will cause the χ² values to be unrealistically high, but the
influence on the parameters is most probably very low.

Source: 
statbel.fgov.be/nl/themas/bevolking/sterfte-en-levensverwachting/sterftetafels-en-leve
nsverwachting#figures

Requirements for the model: y should go from 1000000 to 0, so the “Logistic” (with fixed a
= 1000000 and b = 0) and “Transition” (with fixed central value m = 500000 and “amplitude”
a = 500000) are good candidates.  Unfortunately, none of them really follows the pattern.

You might try the Hermite polynomial model here, and discover that the overall fit is
“better”, which might have some practical value to “predict” the expectancy value for
some age, but the moment you look at the right or the left side of the graph, you see how
ridiculous this model is.
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Probably the best model here is the “Gompertz growth”.  Make sure to set the upper and
lower limits fixed (a=1000000 and d=0):
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Also the “Weibull decay” model fits reasonably.  Set a = 1000000 because that’s the initial
number of people.
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* Survival_friends-family.dta1

Variables: x = time since birth in years at July 1, 2023, for 156 people I know/knew
personally; y = 1 if the person was alive, y = 0 if the person was dead.
Using the 0/1 y values instead, there is no “measurement error”, so one has to enter
some artificial fake value like 0.001 (small enough to make the error flags invisible).

This is a typical example of the “mis-use” of logistic models.
What we want is “the probability of being alive after x years”.  That probability could be
estimated for example by calculating the average (and standard deviation) for the y
values in a number of intervals, but then you would need more data because you throw
away information.  It is usually assumed that these interval averages or a moving
average can be approximated by the simplest sigmoid curve: the logistic function, with
lower limit 0 and upper limit 1.

From this fitting we can estimate that half of the people die before the age of 79.3 years.
The curve follows more or less the 15 point moving average (click “More options” in the
graph section to set this).

Other models, like “Weibull decay” (with upper limit a=1), and “Transition” (with a=-0.5 and
m=0.5), also looks plausible, but it’s impossible to distinguish which one is the “best fit”,
because we have only two possible y values!
The inflection point is also approximately (80, 0.5).
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* Temperature Chatanga.dta1

Variables: x = time (t, in months starting from January 2009, the last is May 2020); y = the
average temperature of that month (in °C), in Chatanga, Russia.

Source: www.worldweatheronline.com/chatanga-weather-history/taymyr/ru.aspx

Of course, a “Sine wave” model will make a lot of sense here!
Just click on “Make a good guess” and some iterations will produce good results.  Notice
that you might expect a period of exactly 12 months, and the algorithm produces 11.987
which is not bad of course.  For more precision, you have to use the exact number of
days since a certain start date (see: sun spots), since some years have more days than
others!  Also try the “Skewed wave” to detect if there is a systematic asymmetry between
the “heating up” and the “cooling down” times of the year.

Of course, you could also
apply the “Linear” model
here to find out if there is a
trend towards warming or
cooling.  But, make sure
the data cover an integer
number of years (a
multiple of 12 months)
then, by setting the last
data points to “inactive”!
In the given time span, you
will find a warming of
0.02°C per year.
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* Temperature in coastal cities.dta1

Variables: x = geographical latitudes of coastal cities; y = average daily temperature in °C. 
The measurement imprecisions were assumed to be half of the least significant digit.
The time span for averaging the temperature was not the same for every location, which
will unavoidably cause some “noise”.

Sources: www.worldclimate.com and https://en.wikipedia.org

Which model can we expect to work here?  You can find some weird “solutions” for this
on the internet, like here: http://webinquiry.org/examples/temps/ where a mess of linear
pieces is used!
One might think that a parabole (left) fits well, or a chain line (right), but the extrapolation
makes no sense!

We better look at the underlying physical reality, even a simplified version.  If we assume
that the earth is a ball flying at a constant distance from the Sun, and the average
temperature is proportional with the average insolation Tavg should be more or less
proportional to the cosine of the latitude/2 (= sin(2π(x-45)/180).  The truth is more
complicated but this is fairly close; see “Global Physical Climatology” 2nd ed., by Dennis L.
Hartmann, Elsevier 2016.
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It might seem that the fit is worse for extreme latitudes, but actually there is a good
reason for that: the Haley Research Station at the Antarctic coast and the base called
“Alert” in northern Canada are most of the year surrounded by ice, so their winters are
more like places with a land climate; they don’t benefit from water tempering the
temperatures like on other coastal places!

It’s interesting to see that places near a cold sea current, like Lima (Peru), are way below
the curve, while those near a warm current, like Bergen (Norway), are above it.
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* Temp Popovica 20230804.dta1

Variables: x = clock time (decimal hours); y = temperature (°C) measured 1m above the
ground, in the shade, in the village of Popovica, in the hills a few km south of Novi Sad,
Serbia, on 4 August 2023.

Source: own measurements.  The weather on that day was quite stable and sunny.  The
thermometer had a resolution of 0.1°.  The absolute precistion was not known, but by
comparing with other thermometers we could assume a precision of 0.1°C.

The simplest model to use here, would be the “Sine wave”.  Fix T to 24, since there are
not enough data points to auto-detect the period precisely.
There seems to be an asymmetry though: the warming up goes slower than the cooling
down, so you might try the “Skewed wave”.

The “Sine wave with harmonics” will fit “nicer”, but... it predicts a night temperature of 1°C,
which is very absurd here.  This is a good example of “overfitting”: the model adapts to
accidental fluctuations, and that’s not what we want.
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* Throwing a pebble.dta1

A pebble was thrown 100 times to a marker line and each time it was measured how
much the test person was wrong.
Variables: x = attempt number, y = distance in cm between the center of the pebble and
the line (+ = too far, - = not far enough).  Since the attempts were done consecutively, x is
closely related to the time of course.

The interesting thing here, was a learning effect.  This can be measured by fitting with the
“Exponential + baseline” model with a fixed c=0 (no base line since the ideal limit is 0).

More about this experiment:
https://www.researchgate.net/publication/360454548_Measuring_psychomotor_improve
ment_-_a_practical_example
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* Tidal_current_Fundy.dta1

Variables: x = time (t) in hours starting 24 August 2020; y = speed (v, in knots) of the tidal
current at the entrance of the Bay of Fundy, Canada.

Source:
l-36.com/tide_week.php?location=Grand%20Manan%20Channel%20(Bay%20of%20Fundy%2
0Entrance),%20New%20Brunswick%20Current

Try the “Added Sine wave” model to find the pattern!

Now, here we can make the convergence much easier because we know the two periods:
T = 12 (from the Sun) and U  12h25min  12.41666...h (from the Moon), so enter them to
start and set them “inactive”.  The fit is good, but not perfect, since the exact movement of
the Moon is very complex!
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* Tumor growth Daskalakis 101.dta1

Variables: x = time in days; y = size of a tumor in a mouse (in mm³).

Source: Constantine Daskalakis, “Tumor Growth Dataset”, TSHS Resources Portal (2016),
www.causeweb.org/tshs/tumor-growth, case 101 (no treatment).

According to people in this field, this kind of growth can be described quite accurately
with the Gompertz model function (without baseline, so d = 0).  Parameter a predicts the
maximal size the tumor will get, and c the speed of the growth.

Since the limit value (the finally expected tumor size) is far above the last measurement,
you can use MDLS.  You should enter a starting value for a, higher than the measure-
ments (e.g. 1800) then.  OLS and MDLS don’t differ very much in this case.

Notice that also the “Logistic” model fits well (with b = 0), actually even better (smaller
S).  But it predicts a smaller final size (1774.6 in stead of 2013).

Repeated comparisons of predicted and observed values might sort out the best em-
pirical model for this phenomenon.
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* Vocabulary vs age (Smith 1926).dta1

Variables: x = age in years (0..6), y = average number of words observed in the vocabulary
of children of that age.  The error on x is assumed to be half a month, on y: the square
root.

Source: Madorah Elizabeth Smith: “An investigation of the development of the sentence
and the extent of vocabulary in young children” (Iowa Child Welfare Research Station,
vol.III nr.5, May 1926), p.52.  Can be found online:
pure.mpg.de/rest/items/item_2385505_3/component/file_2464108/content

This seems to be a tricky data set to model.  We would expect a growth curve that
predicts approximately the vocabulary of an average adult as the limit, but typical models
for this, like “Weibull growth”, “Logistic” or “Transition”, predict impossibly low values.
Only “Gompertz growth” (with d=0) produces something that looks reasonable, but it also
predicts a limit of only 2616.7 words.
So this model might be used as an estimation for age 0 to 6, but not much further!
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* Vocabulary vs word count.dta1

Variables: x = number of words (tokens) in a book; y = number of different tokens in the
book.

Source: 51 books (in plain text format) were downloaded from:
www.gutenberg.org/ebooks
and analyzed with “QUITA” (Quantitative Text Analyzer 1.1.9.0); see: korpus.cz/quitaup.
Note: the numbers obtained are not perfect: some tokens were mistakenly seen for
words, like “I” can be “me” or a roman 1, so a very rough error estimation of 1% was given. 
The error on the y values must be bigger, especially if you consider different versions of
the same word (singular/plural, verb forms etc.) as the same.  A rough estimation of 10%
was given.  Actually the y values should then all be somewhat less, but to remove all the
duplicate word versions would be a very tedious task, something for fanatic linguists, not
essential for our example here.  If we just want to compare writers, it doesn’t matter if
all the values have the same systematic error.

Which model is appropriate here?  One thing is sure: the curve has to go through the
origin: 0 words = 0 different words!  The curve should be ascending, but to infinity or is
there an upper limit?  There is no book with an infinite number of words and new words
can always be invented, so maybe there is no real limit but the sky.
It seems that empirically, a power function fits quite well.  There is even a name for this
phenomenon: “Heaps’ law”, see: en.wikipedia.org/wiki/Heaps%27_law.

Normally I am not in favour of leaving out so-called “outliers”, but “Ulysses” by James
Joyce (reputed as an incomprehensable book) is so far above the rest, and the King
James Bible translation so far below, and they both have a strong leverage on the curve,
so it might be wise to leave them out if you want to see the general pattern.  Or, you
could add several hundreds of other books to the data file, and then the leverage of these
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two “abnormal” books would automatically be less.

You can use this model to judge the vocabulary of the authors: the more above the curve,
the larger it is.  If you want one “vocabulary rating”, you might do this fitting for each
author separately and, for example, calculate the vocabulary if the author would write a
10000 word book.  The value expected by the power model is 2024.32.

There is one principal problem with the power function though: it’s infinitely steep in the
beginning, which means that for every word, an infinite number of new words would be
added.  Although the graph looks globally nice, that’s an ugly detail!
Another model function does NOT have this problem: the “Logarithm shifted through 0”! 
It fits nicely, even with the bible included, and f’(0) = 0.21!  That makes a lot more sense!

* Vocabulary vs word count - De Maupassant-Short stories p1-80 & all.dta1

Variables: like the previous example, but the numbers come from 1 book: “Complete
Original Short Stories” by Guy De Maupassant (translated in English).  For i = 1..80: xi =
number of tokens in the first i (screen) pages, and yi = number of unique tokens in those
pages.  The last x and y are for the whole book.

Source: www.gutenberg.org/files/3090/3090-0.txt

In this case, we get strictly ascending rows of x and y values: with every page x and y
increase, but y lesser and lesser, because the percentage of new words on every new
page descends.  The curve is now much less chaotic of course.
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The power function seems to fit reasonably, but... the last point is a good test to see how
well this model predicts!  If you fit without including that last point, the model will seri-
ously overestimate the vocabulary of the total book (point above right)!  Using OLS it’s
even much worse (OLS: 70980, MDSL: 42121, reality: 17882).

The vocabulary for a 10000 word book predicted by the “Power” model would be 2647,
which makes de Maupassant a “rich” writer (see previous example file). 

If you assume there might be an upper limit, you can try “Weibull growth”, “Rational 1”, or
“Plateau-exponential” with c = 0, but they seriously underestimate the total vocabulary. 
Only the “Transition” model with b = m = 0 actually fits nicely, better than the “Power”
model, although the asymptote stays too low too (12700 instead of 17882).  This is still
closer to reality than the prediction from the “Power” model (42141).

The “Transition” model fitting looks amazing:
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With expanded scale:

Using OLS, the limit value is (accidentally?) a bit higher, but the χ² values are 10 times as
much!  (Don’t compare the S values, because they are calculated differently.)

The “Logarithm shifted through 0” model looks very similar, but it comes closer to the
end value, and better with MDLS than with OLS.
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* Wine ratings vs price Bordeaux 2018 RP.dta1

Variables: x = price of a 2018 Bordeaux wine (in €) when it came out, y = rating by Lisa
Perrotti-Brown for robertparker.com (on a scale of 0..100).  A rating of “95-97” was
entered as “96±1”; “95-97+” was converted to “96.1±1”.

Source: https://www.bordoverview.com/?q=Robert-Parker

The (subjective) quality of a wine is certainly not nicely proportional to the price.  A model
that reflects more or less the relationship needs to be ascending with a horizontal
asymptote since there is a limit value (in this case: 100) if the prices go to infinity.  It
doesn’t have to go through the origin.  The “Rational 2” model fits reasonably.

Strangely, a “free” wine would still get 83 points...  The “Rational_1” model, with a = 100,
that goes through the origin, might make more sense perhaps?

What’s the use of such a model?  Well, suppose you want to choose a wine with a good
quality for the price, you can scale the graph according to your budget, switch the labels
on, and look which wines are far above the curve.  E.g.:
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“Les Gravières” and “Fontenil” seem to be excellent, and “d’Agassac” and “Sociando-
Mallet” seem to be disappointing for the price, according to Lisa Perrotti-Brown. 
Strangely enough, the latter are a few of my favorite wines, so apparently Lisa doesn’t
have the same taste as me...  You could do this exercise with ratings from other tasters
and find out whose advice you like to follow the most.

158



* Wine rating comparison.dta1

Variables: x = 2018 Bordeaux wine rating by Lisa Perrotti-Brown, y = rating by Tim Atkin.

Source: https://www.bordoverview.com/?year=2018&bank=both

Tastes differ, even among professional tasters!  On a scatterplot of the judgments of both
sommeliers we don’t really see a line, but rather a cloud.  There is some correlation, but
Kendall’s τ is only 0.356 (click the “Show” button in the “Report” panel to see this).
The best fitting line can be obtained with the “Linear” model, obviously.  Certainly use
MDLS here, because there is absolutely no preference for choosing Tim as x and Lisa as
y or vice versa; in both cases we should get the same line (mirrored).  Using OLS this is
NOT the case.
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